🚀 Jmeter Mcp 服务器
✨ JMeter 与 AI 工作流相遇:介绍 JMeter MCP 服务器!🤯
概览
什么是 JMeter MCP 服务器?
JMeter MCP 服务器是一个创新的解决方案,它将 Apache JMeter 与 AI 工作流程集成,增强了性能测试能力。它允许用户以更高效的方式执行 JMeter 测试,利用人工智能优化测试场景和结果分析。该服务器旨在为希望简化测试流程的开发人员和测试人员提供服务,同时确保高质量的软件交付。
JMeter MCP 服务器的特点
- AI 集成:JMeter MCP 服务器利用 AI 算法分析测试结果,并提供帮助优化测试用例的见解。
- 用户友好的界面:它提供直观的界面,简化了创建和管理测试计划的过程。
- 可扩展性:该服务器可以同时处理多个测试执行,适合大规模测试环境。
- 实时监控:用户可以实时监控测试执行,允许立即调整和故障排除。
- 综合报告:该服务器生成详细报告,提供性能指标的见解,帮助团队做出明智的决策。
如何使用 JMeter MCP 服务器
- 安装:从官方仓库下载 JMeter MCP 服务器,并按照文档中提供的安装说明进行操作。
- 配置:根据您的测试需求配置服务器设置。这包括设置测试参数、AI 集成选项和用户权限。
- 创建测试计划:使用用户友好的界面创建和自定义您的测试计划。您可以定义场景、指定负载条件和设置性能指标。
- 执行测试:直接从服务器启动您的测试。AI 算法将实时分析执行情况,提供见解和建议。
- 审查结果:测试执行后,查看服务器生成的综合报告。利用这些见解优化您的应用程序并提高性能。
常见问题解答
Q1: JMeter MCP 服务器的主要目的是什么?
A1: JMeter MCP 服务器的主要目的是通过集成 AI 工作流程来增强性能测试,从而实现更高效的测试执行和分析。
Q2: 我可以使用 JMeter MCP 服务器进行大规模测试吗?
A2: 是的,JMeter MCP 服务器设计用于处理大规模测试环境,支持多个同时测试执行。
Q3: 使用 JMeter MCP 服务器是否需要费用?
A3: JMeter MCP 服务器是一个公共仓库,免费提供。然而,用户可能需要考虑与基础设施和其他工具相关的费用。
Q4: AI 如何改善 JMeter MCP 服务器中的测试过程?
A4: AI 通过实时分析测试结果,提供帮助优化测试用例和提高整体性能的见解,从而改善测试过程。
Q5: 我在哪里可以找到有关 JMeter MCP 服务器的更多信息?
A5: 更多信息可以在官方网站 jmeter.ai 和 GitHub 仓库 QAInsights/jmeter-mcp-server 找到。
详情
🚀 JMeter MCP Server
This is a Model Context Protocol (MCP) server that allows executing JMeter tests through MCP-compatible clients and analyzing test results.
[!IMPORTANT] 📢 Looking for an AI Assistant inside JMeter? 🚀 Check out Feather Wand
📋 Features
JMeter Execution
- 📊 Execute JMeter tests in non-GUI mode
- 🖥️ Launch JMeter in GUI mode
- 📝 Capture and return execution output
- 📊 Generate JMeter report dashboard
Test Results Analysis
- 📈 Parse and analyze JMeter test results (JTL files)
- 📊 Calculate comprehensive performance metrics
- 🔍 Identify performance bottlenecks automatically
- 💡 Generate actionable insights and recommendations
- 📊 Create visualizations of test results
- 📑 Generate HTML reports with analysis results
🛠️ Installation
Local Installation
-
Install
uv
: -
Ensure JMeter is installed on your system and accessible via the command line.
⚠️ Important: Make sure JMeter is executable. You can do this by running:
chmod +x /path/to/jmeter/bin/jmeter
- Install required Python dependencies:
pip install numpy matplotlib
- Configure the
.env
file, refer to the.env.example
file for details.
### JMeter Configuration
JMETER_HOME=/path/to/apache-jmeter-5.6.3
JMETER_BIN=${JMETER_HOME}/bin/jmeter
### Optional: JMeter Java options
JMETER_JAVA_OPTS="-Xms1g -Xmx2g"
💻 MCP Usage
-
Connect to the server using an MCP-compatible client (e.g., Claude Desktop, Cursor, Windsurf)
-
Send a prompt to the server:
Run JMeter test /path/to/test.jmx
- MCP compatible client will use the available tools:
JMeter Execution Tools
- 🖥️
execute_jmeter_test
: Launches JMeter in GUI mode, but doesn't execute test as per the JMeter design - 🚀
execute_jmeter_test_non_gui
: Execute a JMeter test in non-GUI mode (default mode for better performance)
Test Results Analysis Tools
- 📊
analyze_jmeter_results
: Analyze JMeter test results and provide a summary of key metrics and insights - 🔍
identify_performance_bottlenecks
: Identify performance bottlenecks in JMeter test results - 💡
get_performance_insights
: Get insights and recommendations for improving performance - 📈
generate_visualization
: Generate visualizations of JMeter test results
🏗️ MCP Configuration
Add the following configuration to your MCP client config:
{
"mcpServers": {
"jmeter": {
"command": "/path/to/uv",
"args": [
"--directory",
"/path/to/jmeter-mcp-server",
"run",
"jmeter_server.py"
]
}
}
}
✨ Use Cases
Test Execution
- Run JMeter tests in non-GUI mode for better performance
- Launch JMeter in GUI mode for test development
- Generate JMeter report dashboards
Test Results Analysis
- Analyze JTL files to understand performance characteristics
- Identify performance bottlenecks and their severity
- Get actionable recommendations for performance improvements
- Generate visualizations for better understanding of results
- Create comprehensive HTML reports for sharing with stakeholders
🛑 Error Handling
The server will:
- Validate that the test file exists
- Check that the file has a .jmx extension
- Validate that JTL files exist and have valid formats
- Capture and return any execution or analysis errors
📊 Test Results Analyzer
The Test Results Analyzer is a powerful feature that helps you understand your JMeter test results better. It consists of several components:
Parser Module
- Supports both XML and CSV JTL formats
- Efficiently processes large files with streaming parsers
- Validates file formats and handles errors gracefully
Metrics Calculator
- Calculates overall performance metrics (average, median, percentiles)
- Provides endpoint-specific metrics for detailed analysis
- Generates time series metrics to track performance over time
- Compares metrics with benchmarks for context
Bottleneck Analyzer
- Identifies slow endpoints based on response times
- Detects error-prone endpoints with high error rates
- Finds response time anomalies and outliers
- Analyzes the impact of concurrency on performance
Insights Generator
- Provides specific recommendations for addressing bottlenecks
- Analyzes error patterns and suggests solutions
- Generates insights on scaling behavior and capacity limits
- Prioritizes recommendations based on potential impact
Visualization Engine
- Creates time series graphs showing performance over time
- Generates distribution graphs for response time analysis
- Produces endpoint comparison charts for identifying issues
- Creates comprehensive HTML reports with all analysis results
📝 Example Usage
### Run a JMeter test and generate a results file
Run JMeter test sample_test.jmx in non-GUI mode and save results to results.jtl
### Analyze the results
Analyze the JMeter test results in results.jtl and provide detailed insights
### Identify bottlenecks
What are the performance bottlenecks in the results.jtl file?
### Get recommendations
What recommendations do you have for improving performance based on results.jtl?
### Generate visualizations
Create a time series graph of response times from results.jtl
Server配置
{
"mcpServers": {
"jmeter-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--qainsights--jmeter-mcp-server--jmeter-mcp-server",
"python main.py"
],
"env": {}
}
}
}