Azure Data Explorer Mcp Server
A Model Context Protocol (MCP) server that allows AI assistants to query and analyze Azure Data Explorer databases using standardized interfaces.
Overview
What is ADX-MCP-Server?
The ### ADX-MCP-Server is a Model Context Protocol (MCP) server designed to facilitate AI assistants in querying and analyzing Azure Data Explorer (ADX) databases. It provides standardized interfaces that streamline the interaction between AI systems and data repositories, making it easier to retrieve and manipulate data effectively.
Features of ADX-MCP-Server
- Standardized Interfaces: The server offers a set of standardized APIs that allow for seamless communication between AI assistants and Azure Data Explorer databases.
- Data Querying: Users can execute complex queries on ADX databases, enabling efficient data retrieval and analysis.
- AI Integration: The server is built to support AI applications, enhancing their ability to process and analyze large datasets.
- Public Repository: The ADX-MCP-Server is available as a public repository, allowing developers to contribute and enhance its functionality.
- MIT License: The project is open-source and licensed under the MIT License, promoting collaboration and sharing within the developer community.
How to Use ADX-MCP-Server
- Installation: Clone the repository from GitHub and follow the installation instructions provided in the documentation.
- Configuration: Set up the server by configuring the necessary parameters to connect to your Azure Data Explorer instance.
- API Access: Utilize the standardized APIs to send queries and receive responses from the ADX database.
- Integration: Integrate the server with your AI applications to leverage its querying capabilities for data analysis.
Frequently Asked Questions
Q1: What is the purpose of the ADX-MCP-Server?
A1: The ADX-MCP-Server serves as a bridge between AI assistants and Azure Data Explorer databases, enabling efficient data querying and analysis through standardized interfaces.
Q2: Is the ADX-MCP-Server open-source?
A2: Yes, the ADX-MCP-Server is an open-source project available on GitHub under the MIT License.
Q3: Can I contribute to the ADX-MCP-Server?
A3: Absolutely! Contributions are welcome. You can fork the repository, make changes, and submit a pull request.
Q4: How do I install the ADX-MCP-Server?
A4: You can install the server by cloning the repository from GitHub and following the installation instructions in the documentation.
Q5: What kind of queries can I run with ADX-MCP-Server?
A5: You can run a variety of queries, including complex analytical queries, to retrieve and manipulate data stored in Azure Data Explorer databases.
Details
Azure Data Explorer MCP Server
<a href="https://glama.ai/mcp/servers/1yysyd147h"> <img width="380" height="200" src="https://glama.ai/mcp/servers/1yysyd147h/badge" /> </a>A Model Context Protocol (MCP) server for Azure Data Explorer/Eventhouse in Microsoft Fabric.
This provides access to your Azure Data Explorer/Eventhouse clusters and databases through standardized MCP interfaces, allowing AI assistants to execute KQL queries and explore your data.
Features
-
Execute KQL queries against Azure Data Explorer
-
Discover and explore database resources
- List tables in the configured database
- View table schemas
- Sample data from tables
- Get table statistics/details
-
Authentication support
- Token credential support (Azure CLI, MSI, etc.)
- Workload Identity credential support for AKS
-
Docker containerization support
-
Provide interactive tools for AI assistants
The list of tools is configurable, so you can choose which tools you want to make available to the MCP client. This is useful if you don't use certain functionality or if you don't want to take up too much of the context window.
Usage
-
Login to your Azure account which has the permission to the ADX cluster using Azure CLI.
-
Configure the environment variables for your ADX cluster, either through a
.env
file or system environment variables:
### Required: Azure Data Explorer configuration
ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net
ADX_DATABASE=your_database
### Optional: Azure Workload Identity credentials
### AZURE_TENANT_ID=your-tenant-id
### AZURE_CLIENT_ID=your-client-id
### ADX_TOKEN_FILE_PATH=/var/run/secrets/azure/tokens/azure-identity-token
Azure Workload Identity Support
The server now uses WorkloadIdentityCredential by default when running in Azure Kubernetes Service (AKS) environments with workload identity configured. It prioritizes the use of WorkloadIdentityCredential whenever the necessary environment variables are present.
For AKS with Azure Workload Identity, you only need to:
- Make sure the pod has
AZURE_TENANT_ID
andAZURE_CLIENT_ID
environment variables set - Ensure the token file is mounted at the default path or specify a custom path with
ADX_TOKEN_FILE_PATH
If these environment variables are not present, the server will automatically fall back to DefaultAzureCredential, which tries multiple authentication methods in sequence.
- Add the server configuration to your client configuration file. For example, for Claude Desktop:
{
"mcpServers": {
"adx": {
"command": "uv",
"args": [
"--directory",
"<full path to adx-mcp-server directory>",
"run",
"src/adx_mcp_server/main.py"
],
"env": {
"ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net",
"ADX_DATABASE": "your_database"
}
}
}
}
Note: if you see
Error: spawn uv ENOENT
in Claude Desktop, you may need to specify the full path touv
or set the environment variableNO_UV=1
in the configuration.
Docker Usage
This project includes Docker support for easy deployment and isolation.
Building the Docker Image
Build the Docker image using:
docker build -t adx-mcp-server .
Running with Docker
You can run the server using Docker in several ways:
Using docker run directly:
docker run -it --rm \
-e ADX_CLUSTER_URL=https://yourcluster.region.kusto.windows.net \
-e ADX_DATABASE=your_database \
-e AZURE_TENANT_ID=your_tenant_id \
-e AZURE_CLIENT_ID=your_client_id \
adx-mcp-server
Using docker-compose:
Create a .env
file with your Azure Data Explorer credentials and then run:
docker-compose up
Running with Docker in Claude Desktop
To use the containerized server with Claude Desktop, update the configuration to use Docker with the environment variables:
{
"mcpServers": {
"adx": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"-e", "ADX_CLUSTER_URL",
"-e", "ADX_DATABASE",
"-e", "AZURE_TENANT_ID",
"-e", "AZURE_CLIENT_ID",
"-e", "ADX_TOKEN_FILE_PATH",
"adx-mcp-server"
],
"env": {
"ADX_CLUSTER_URL": "https://yourcluster.region.kusto.windows.net",
"ADX_DATABASE": "your_database",
"AZURE_TENANT_ID": "your_tenant_id",
"AZURE_CLIENT_ID": "your_client_id",
"ADX_TOKEN_FILE_PATH": "/var/run/secrets/azure/tokens/azure-identity-token"
}
}
}
}
This configuration passes the environment variables from Claude Desktop to the Docker container by using the -e
flag with just the variable name, and providing the actual values in the env
object.
Using as a Dev Container / GitHub Codespace
This repository can also be used as a development container for a seamless development experience. The dev container setup is located in the devcontainer-feature/adx-mcp-server
folder.
For more details, check the devcontainer README.
Development
Contributions are welcome! Please open an issue or submit a pull request if you have any suggestions or improvements.
This project uses uv
to manage dependencies. Install uv
following the instructions for your platform:
curl -LsSf https://astral.sh/uv/install.sh | sh
You can then create a virtual environment and install the dependencies with:
uv venv
source .venv/bin/activate # On Unix/macOS
.venv\Scripts\activate # On Windows
uv pip install -e .
Project Structure
The project has been organized with a src
directory structure:
adx-mcp-server/
├── src/
│ └── adx_mcp_server/
│ ├── __init__.py # Package initialization
│ ├── server.py # MCP server implementation
│ ├── main.py # Main application logic
├── Dockerfile # Docker configuration
├── docker-compose.yml # Docker Compose configuration
├── .dockerignore # Docker ignore file
├── pyproject.toml # Project configuration
└── README.md # This file
Testing
The project includes a comprehensive test suite that ensures functionality and helps prevent regressions.
Run the tests with pytest:
### Install development dependencies
uv pip install -e ".[dev]"
### Run the tests
pytest
### Run with coverage report
pytest --cov=src --cov-report=term-missing
Tests are organized into:
- Configuration validation tests
- Server functionality tests
- Error handling tests
- Main application tests
When adding new features, please also add corresponding tests.
Tools
| Tool | Category | Description |
| | | |
| execute_query
| Query | Execute a KQL query against Azure Data Explorer |
| list_tables
| Discovery | List all tables in the configured database |
| get_table_schema
| Discovery | Get the schema for a specific table |
| sample_table_data
| Discovery | Get sample data from a table with optional sample size |
License
MIT
Server Config
{
"mcpServers": {
"adx-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--pab1it0--adx-mcp-server--adx-mcp-server",
"adx-mcp-server"
],
"env": {
"ADX_CLUSTER_URL": "adx-cluster-url",
"ADX_DATABASE": "adx-database"
}
}
}
}