🚀 Jmeter Mcp 伺服器
✨ JMeter 與 AI 工作流程相遇:介紹 JMeter MCP 伺服器!🤯
概覽
JMeter MCP 伺服器是什麼?
JMeter MCP 伺服器是一個創新的解決方案,將 Apache JMeter 與 AI 工作流程整合,增強性能測試能力。它允許用戶以更高效的方式執行 JMeter 測試,利用人工智慧來優化測試場景和結果分析。這個伺服器專為希望簡化測試流程的開發人員和測試人員設計,同時確保高品質的軟體交付。
JMeter MCP 伺服器的特點
- AI 整合:JMeter MCP 伺服器利用 AI 算法分析測試結果,提供幫助優化測試案例的見解。
- 使用者友好的介面:它提供直觀的介面,簡化創建和管理測試計畫的過程。
- 可擴展性:該伺服器可以同時處理多個測試執行,適合大規模測試環境。
- 實時監控:用戶可以實時監控測試執行,允許立即調整和故障排除。
- 全面報告:伺服器生成詳細報告,提供性能指標的見解,幫助團隊做出明智的決策。
如何使用 JMeter MCP 伺服器
- 安裝:從官方庫下載 JMeter MCP 伺服器,並按照文檔中提供的安裝說明進行操作。
- 配置:根據您的測試需求配置伺服器設置,包括設置測試參數、AI 整合選項和用戶權限。
- 創建測試計畫:使用友好的介面創建和自定義您的測試計畫。您可以定義場景、指定負載條件和設置性能指標。
- 執行測試:直接從伺服器啟動測試。AI 算法將實時分析執行過程,提供見解和建議。
- 審查結果:測試執行後,審查伺服器生成的全面報告。利用這些見解來優化您的應用程序並改善性能。
常見問題解答
Q1: JMeter MCP 伺服器的主要目的是什么?
A1: JMeter MCP 伺服器的主要目的是通過整合 AI 工作流程來增強性能測試,允許更高效的測試執行和分析。
Q2: 我可以使用 JMeter MCP 伺服器進行大規模測試嗎?
A2: 是的,JMeter MCP 伺服器設計用於處理大規模測試環境,支持多個同時測試執行。
Q3: 使用 JMeter MCP 伺服器是否需要費用?
A3: JMeter MCP 伺服器是一個公共庫,免費提供。然而,用戶可能需要考慮基礎設施和額外工具的相關費用。
Q4: AI 如何改善 JMeter MCP 伺服器中的測試過程?
A4: AI 通過實時分析測試結果來改善測試過程,提供幫助優化測試案例和改善整體性能的見解。
Q5: 我可以在哪裡找到有關 JMeter MCP 伺服器的更多信息?
A5: 更多信息可以在官方網站 jmeter.ai 和 GitHub 倉庫 QAInsights/jmeter-mcp-server 中找到。
詳細
🚀 JMeter MCP Server
This is a Model Context Protocol (MCP) server that allows executing JMeter tests through MCP-compatible clients and analyzing test results.
[!IMPORTANT] 📢 Looking for an AI Assistant inside JMeter? 🚀 Check out Feather Wand
📋 Features
JMeter Execution
- 📊 Execute JMeter tests in non-GUI mode
- 🖥️ Launch JMeter in GUI mode
- 📝 Capture and return execution output
- 📊 Generate JMeter report dashboard
Test Results Analysis
- 📈 Parse and analyze JMeter test results (JTL files)
- 📊 Calculate comprehensive performance metrics
- 🔍 Identify performance bottlenecks automatically
- 💡 Generate actionable insights and recommendations
- 📊 Create visualizations of test results
- 📑 Generate HTML reports with analysis results
🛠️ Installation
Local Installation
-
Install
uv
: -
Ensure JMeter is installed on your system and accessible via the command line.
⚠️ Important: Make sure JMeter is executable. You can do this by running:
chmod +x /path/to/jmeter/bin/jmeter
- Install required Python dependencies:
pip install numpy matplotlib
- Configure the
.env
file, refer to the.env.example
file for details.
### JMeter Configuration
JMETER_HOME=/path/to/apache-jmeter-5.6.3
JMETER_BIN=${JMETER_HOME}/bin/jmeter
### Optional: JMeter Java options
JMETER_JAVA_OPTS="-Xms1g -Xmx2g"
💻 MCP Usage
-
Connect to the server using an MCP-compatible client (e.g., Claude Desktop, Cursor, Windsurf)
-
Send a prompt to the server:
Run JMeter test /path/to/test.jmx
- MCP compatible client will use the available tools:
JMeter Execution Tools
- 🖥️
execute_jmeter_test
: Launches JMeter in GUI mode, but doesn't execute test as per the JMeter design - 🚀
execute_jmeter_test_non_gui
: Execute a JMeter test in non-GUI mode (default mode for better performance)
Test Results Analysis Tools
- 📊
analyze_jmeter_results
: Analyze JMeter test results and provide a summary of key metrics and insights - 🔍
identify_performance_bottlenecks
: Identify performance bottlenecks in JMeter test results - 💡
get_performance_insights
: Get insights and recommendations for improving performance - 📈
generate_visualization
: Generate visualizations of JMeter test results
🏗️ MCP Configuration
Add the following configuration to your MCP client config:
{
"mcpServers": {
"jmeter": {
"command": "/path/to/uv",
"args": [
"--directory",
"/path/to/jmeter-mcp-server",
"run",
"jmeter_server.py"
]
}
}
}
✨ Use Cases
Test Execution
- Run JMeter tests in non-GUI mode for better performance
- Launch JMeter in GUI mode for test development
- Generate JMeter report dashboards
Test Results Analysis
- Analyze JTL files to understand performance characteristics
- Identify performance bottlenecks and their severity
- Get actionable recommendations for performance improvements
- Generate visualizations for better understanding of results
- Create comprehensive HTML reports for sharing with stakeholders
🛑 Error Handling
The server will:
- Validate that the test file exists
- Check that the file has a .jmx extension
- Validate that JTL files exist and have valid formats
- Capture and return any execution or analysis errors
📊 Test Results Analyzer
The Test Results Analyzer is a powerful feature that helps you understand your JMeter test results better. It consists of several components:
Parser Module
- Supports both XML and CSV JTL formats
- Efficiently processes large files with streaming parsers
- Validates file formats and handles errors gracefully
Metrics Calculator
- Calculates overall performance metrics (average, median, percentiles)
- Provides endpoint-specific metrics for detailed analysis
- Generates time series metrics to track performance over time
- Compares metrics with benchmarks for context
Bottleneck Analyzer
- Identifies slow endpoints based on response times
- Detects error-prone endpoints with high error rates
- Finds response time anomalies and outliers
- Analyzes the impact of concurrency on performance
Insights Generator
- Provides specific recommendations for addressing bottlenecks
- Analyzes error patterns and suggests solutions
- Generates insights on scaling behavior and capacity limits
- Prioritizes recommendations based on potential impact
Visualization Engine
- Creates time series graphs showing performance over time
- Generates distribution graphs for response time analysis
- Produces endpoint comparison charts for identifying issues
- Creates comprehensive HTML reports with all analysis results
📝 Example Usage
### Run a JMeter test and generate a results file
Run JMeter test sample_test.jmx in non-GUI mode and save results to results.jtl
### Analyze the results
Analyze the JMeter test results in results.jtl and provide detailed insights
### Identify bottlenecks
What are the performance bottlenecks in the results.jtl file?
### Get recommendations
What recommendations do you have for improving performance based on results.jtl?
### Generate visualizations
Create a time series graph of response times from results.jtl
伺服器配置
{
"mcpServers": {
"jmeter-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--qainsights--jmeter-mcp-server--jmeter-mcp-server",
"python main.py"
],
"env": {}
}
}
}