Mcp 聊天桌面应用程序
一个桌面聊天应用程序,利用MCP(模型上下文协议)与其他大型语言模型(LLMs)进行接口。
概览
什么是 chat-mcp?
chat-mcp 是一款桌面聊天应用程序,利用模型上下文协议(MCP)来促进与各种大型语言模型(LLMs)的通信。这个创新的应用程序允许用户与多个 AI 模型无缝互动,通过利用每个模型的独特能力来增强他们的聊天体验。
chat-mcp 的特点
- 多模型支持:chat-mcp 可以连接到各种 LLM,允许用户选择最适合他们需求的模型。
- 用户友好的界面:该应用程序设计简洁直观,便于用户导航和使用其功能。
- 实时通信:用户可以进行实时对话,立即从连接的 LLM 收到响应。
- 可定制设置:用户可以调整设置,以根据个人偏好定制聊天体验。
- 开源:作为一个开源项目,chat-mcp 鼓励社区贡献和开发透明度。
如何使用 chat-mcp
- 下载并安装:访问 chat-mcp 仓库 下载最新版本的应用程序。
- 设置您的账户:按照屏幕上的说明创建账户或登录。
- 连接到 LLM:从可用的 LLM 中选择进行连接。您可以根据需要在模型之间切换。
- 开始聊天:在聊天窗口中输入内容开始对话。LLM 将根据提供的上下文作出响应。
- 探索功能:利用可定制的设置来增强您的聊天体验。
常见问题解答
什么是模型上下文协议(MCP)?
模型上下文协议(MCP)是一个框架,允许不同的 AI 模型进行通信和共享上下文,从而实现更连贯和上下文相关的对话。
chat-mcp 是免费使用的吗?
是的,chat-mcp 是一个开源应用程序,这意味着它可以免费下载和使用。如果您愿意,也可以为其开发做出贡献。
我可以为 chat-mcp 项目贡献吗?
当然可以!欢迎贡献。您可以在 GitHub 仓库 提交问题、功能请求或甚至拉取请求。
chat-mcp 支持哪些平台?
chat-mcp 旨在跨平台,支持主要操作系统,如 Windows、macOS 和 Linux。
我该如何报告错误或问题?
如果您遇到任何错误或问题,请在仓库的 问题页面 上报告。您的反馈对改进应用程序非常重要。
通过使用 chat-mcp,用户可以增强与 AI 模型的互动,使对话更加引人入胜和富有信息。
详情
MCP Chat Desktop App
A Cross-Platform Interface for LLMs
This desktop application utilizes the MCP (Model Context Protocol) to seamlessly connect and interact with various Large Language Models (LLMs). Built on Electron, the app ensures full cross-platform compatibility, enabling smooth operation across different operating systems.
The primary objective of this project is to deliver a clean, minimalistic codebase that simplifies understanding the core principles of MCP. Additionally, it provides a quick and efficient way to test multiple servers and LLMs, making it an ideal tool for developers and researchers alike.
News
This project originated as a modified version of Chat-UI, initially adopting a minimalist code approach to implement core MCP functionality for educational purposes.
Through iterative updates to MCP, I received community feedback advocating for a completely new architecture - one that eliminates third-party CDN dependencies and establishes clearer modular structure to better support derivative development and debugging workflows.
This led to the creation of Tool Unitary User Interface, a restructured desktop application optimized for AI-powered development. Building upon the original foundation, TUUI serves as a practical AI-assisted development paradigm, if you're interested, you can also leverage AI to develop new features for TUUI. The platform employs a strict linting and formatting system to ensure AI-generated code adheres to coding standards.
📢 Update: June 2025
The current project refactoring has been largely completed, and a pre-release version is now available. Please refer to the following documentation for details:
Features
-
Cross-Platform Compatibility: Supports Linux, macOS, and Windows.
-
Flexible Apache-2.0 License: Allows easy modification and building of your own desktop applications.
-
Dynamic LLM Configuration: Compatible with all OpenAI SDK-supported LLMs, enabling quick testing of multiple backends through manual or preset configurations.
-
Multi-Client Management: Configure and manage multiple clients to connect to multiple servers using MCP config.
-
UI Adaptability: The UI can be directly extracted for web use, ensuring consistent ecosystem and interaction logic across web and desktop versions.
Architecture
Adopted a straightforward architecture consistent with the MCP documentation to facilitate a clear understanding of MCP principles by:
How to use
After cloning or downloading this repository:
-
Please modify the
config.json
file located in src/main.
Ensure that thecommand
andpath
specified in theargs
are valid. -
Please ensure that Node.js is installed on your system.
You can verify this by runningnode -v
andnpm -v
in your terminal to check their respective versions. -
npm install
-
npm start
Configuration
Create a .json
file and paste the following content into it. This file can then be provided as the interface configuration for the Chat UI.
-
gtp-api.json
{ "chatbotStore": { "apiKey": "", "url": "https://api.aiql.com", "path": "/v1/chat/completions", "model": "gpt-4o-mini", "max_tokens_value": "", "mcp": true }, "defaultChoiceStore": { "model": [ "gpt-4o-mini", "gpt-4o", "gpt-4", "gpt-4-turbo" ] } }
You can replace the 'url' if you have direct access to the OpenAI API.
Alternatively, you can also use another API endpoint that supports function calls:
-
qwen-api.json
{ "chatbotStore": { "apiKey": "", "url": "https://dashscope.aliyuncs.com/compatible-mode", "path": "/v1/chat/completions", "model": "qwen-turbo", "max_tokens_value": "", "mcp": true }, "defaultChoiceStore": { "model": [ "qwen-turbo", "qwen-plus", "qwen-max" ] } }
-
deepinfra.json
{ "chatbotStore": { "apiKey": "", "url": "https://api.deepinfra.com", "path": "/v1/openai/chat/completions", "model": "meta-llama/Meta-Llama-3.1-70B-Instruct", "max_tokens_value": "32000", "mcp": true }, "defaultChoiceStore": { "model": [ "meta-llama/Meta-Llama-3.1-70B-Instruct", "meta-llama/Meta-Llama-3.1-405B-Instruct", "meta-llama/Meta-Llama-3.1-8B-Instruct" ] } }
Build Application
You can build your own desktop application by:
npm run build-app
This CLI helps you build and package your application for your current OS, with artifacts stored in the /artifacts directory.
For Debian/Ubuntu users experiencing RPM build issues, try one of the following solutions:
-
Edit
package.json
to skip the RPM build step. Or -
Install
rpm
usingsudo apt-get install rpm
(You may need to runsudo apt update
to ensure your package list is up-to-date)
Troubleshooting
Error: spawn npx ENOENT - ISSUE 40
Modify the config.json
in src/main
On windows, npx may not work, please refer my workaround: ISSUE 101
- Or you can use
node
in config.json:{ "mcpServers": { "filesystem": { "command": "node", "args": [ "node_modules/@modelcontextprotocol/server-filesystem/dist/index.js", "D:/Github/mcp-test" ] } } }
Please ensure that the provided path is valid, especially if you are using a relative path. It is highly recommended to provide an absolute path for better clarity and accuracy.
By default, I will install server-everything
, server-filesystem
, and server-puppeteer
for test purposes. However, you can install additional server libraries or use npx
to utilize other server libraries as needed.
Installation timeout
Generally, after executing npm install
for the entire project, the total size of files in the node_modules
directory typically exceeds 500MB.
If the installation process stalls at less than 300MB and the progress bar remains static, it is likely due to a timeout during the installation of the latter part, specifically Electron.
This issue often arises because the download speed from Electron's default server is excessively slow or even inaccessible in certain regions. To resolve this, you can modify the environment or global variable ELECTRON_MIRROR
to switch to an Electron mirror site that is accessible from your location.
Electron builder timeout
When using electron-builder to package files, it automatically downloads several large release packages from GitHub. If the network connection is unstable, this process may be interrupted or timeout.
On Windows, you may need to clear the cache located under the electron
and electron-builder
directories within C:\Users\YOURUSERNAME\AppData\Local
before attempting to retry.
Due to potential terminal permission issues, it is recommended to use the default shell terminal instead of VSCode's built-in terminal.
Demo
Multimodal Support
Reasoning and Latex Support
MCP Tools Visualization
MCP Toolcall Process Overview
MCP Prompts Template
Dynamic LLM Config
DevTool Troubleshooting
Server配置
{
"mcpServers": {
"chat-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--ai-ql--chat-mcp--chat-mcp",
"npm run start"
],
"env": {}
}
}
}