Lara 翻译 Mcp 服务器
概览
什么是Lara-MCP?
Lara-MCP是一个开源项目,托管在GitHub上,属于“translated”组织。它是一个强大的工具,旨在帮助开发者将多语言功能集成到他们的Laravel应用程序中。该项目旨在简化管理翻译和本地化的过程,使开发者更容易创建面向全球用户的应用程序。
Lara-MCP的特点
- 多语言支持:Lara-MCP允许开发者在他们的应用程序中无缝管理多种语言。
- 易于集成:该包设计为与Laravel平滑集成,利用其现有的功能和特性。
- 用户友好的界面:该项目提供了一个简单的界面来管理翻译,即使对于不熟悉本地化的用户也很容易上手。
- 社区驱动:作为一个开源项目,Lara-MCP受益于来自全球开发者的贡献,确保其保持更新和相关性。
- 文档:提供全面的文档,帮助用户有效理解如何实施和利用Lara-MCP的功能。
如何使用Lara-MCP
-
安装:首先通过Composer安装Lara-MCP。您可以运行以下命令:
composer require translated/lara-mcp
-
配置:安装后,使用以下命令发布配置文件:
php artisan vendor:publish --provider="Translated\LaraMcp\LaraMcpServiceProvider"
-
设置语言:通过编辑配置文件配置您希望在应用程序中支持的语言。
-
管理翻译:使用提供的界面根据需要添加、编辑或删除翻译。您还可以导入/导出翻译文件以便于管理。
-
在视图中使用翻译:在您的Blade模板中利用翻译函数,根据用户偏好显示正确的语言。
常见问题
Lara-MCP的目的是什么?
Lara-MCP旨在促进在Laravel应用程序中集成多语言支持,使开发者更容易管理翻译和本地化。
Lara-MCP是免费使用的吗?
是的,Lara-MCP是一个开源项目,这意味着它可以在MIT许可证下免费使用和修改。
我如何能为Lara-MCP做贡献?
您可以通过提交拉取请求、报告问题或在GitHub仓库上建议功能来为该项目做贡献。
Lara-MCP与哪些版本的Laravel兼容?
Lara-MCP与Laravel 8及以上版本兼容。请始终查看文档以获取最新的兼容性信息。
我在哪里可以找到Lara-MCP的文档?
文档可在GitHub仓库中找到,提供有关安装、配置和使用的详细说明。
详情
Lara Translate MCP Server
A Model Context Protocol (MCP) Server for Lara Translate API, enabling powerful translation capabilities with support for language detection, context-aware translations and translation memories.
📚 Table of Contents
- 📖 Introduction
- 🛠 Available Tools
- 🚀 Getting Started
- 🧩 Installation Engines
- 💻 Popular Clients that supports MCPs
- 🆘 Support
📖 Introduction
<details> <summary><strong>What is MCP?</strong></summary>Model Context Protocol (MCP) is an open standardized communication protocol that enables AI applications to connect with external tools, data sources, and services. Think of MCP like a USB-C port for AI applications - just as USB-C provides a standardized way to connect devices to various peripherals, MCP provides a standardized way to connect AI models to different data sources and tools.
Lara Translate MCP Server enables AI applications to access Lara Translate's powerful translation capabilities through this standardized protocol.
</details> <details> <summary><strong>How Lara Translate MCP Works</strong></summary>More info about Model Context Protocol on: https://modelcontextprotocol.io/
Lara Translate MCP Server implements the Model Context Protocol to provide seamless translation capabilities to AI applications. The integration follows this flow:
- Connection Establishment: When an MCP-compatible AI application starts, it connects to configured MCP servers, including the Lara Translate MCP Server
- Tool & Resource Discovery: The AI application discovers available translation tools and resources provided by the Lara Translate MCP Server
- Request Processing: When translation needs are identified:
- The AI application formats a structured request with text to translate, language pairs, and optional context
- The MCP server validates the request and transforms it into Lara Translate API calls
- The request is securely sent to Lara Translate's API using your credentials
- Translation & Response: Lara Translate processes the translation using advanced AI models
- Result Integration: The translation results are returned to the AI application, which can then incorporate them into its response
This integration architecture allows AI applications to access professional-grade translations without implementing the API directly, while maintaining the security of your API credentials and offering flexibility to adjust translation parameters through natural language instructions.
</details> <details> <summary><strong>Why to use Lara inside an LLM</strong></summary>Integrating Lara with LLMs creates a powerful synergy that significantly enhances translation quality for non-English languages.
Why General LLMs Fall Short in Translation
While large language models possess broad linguistic capabilities, they often lack the specialized expertise and up-to-date terminology required for accurate translations in specific domains and languages.
Lara’s Domain-Specific Advantage
Lara overcomes this limitation by leveraging Translation Language Models (T-LMs) trained on billions of professionally translated segments. These models provide domain-specific machine translation that captures cultural nuances and industry terminology that generic LLMs may miss. The result: translations that are contextually accurate and sound natural to native speakers.
Designed for Non-English Strength
Lara has a strong focus on non-English languages, addressing the performance gap found in models such as GPT-4. The dominance of English in datasets such as Common Crawl and Wikipedia results in lower quality output in other languages. Lara helps close this gap by providing higher quality understanding, generation, and restructuring in a multilingual context.
Faster, Smarter Multilingual Performance
By offloading complex translation tasks to specialized T-LMs, Lara reduces computational overhead and minimizes latency—a common issue for LLMs handling non-English input. Its architecture processes translations in parallel with the LLM, enabling for real-time, high-quality output without compromising speed or efficiency.
Cost-Efficient Translation at Scale
Lara also lowers the cost of using models like GPT-4 in non-English workflows. Since tokenization (and pricing) is optimized for English, using Lara allows translation to take place before hitting the LLM, meaning that only the translated English content is processed. This improves cost efficiency and supports competitive scalability for global enterprises.
</details>🛠 Available Tools
Translation Tools
<details> <summary><strong>translate</strong> - Translate text between languages</summary>Inputs:
text
(array): An array of text blocks to translate, each with:text
(string): The text contenttranslatable
(boolean): Whether this block should be translated
source
(optional string): Source language code (e.g., 'en-EN')target
(string): Target language code (e.g., 'it-IT')context
(optional string): Additional context to improve translation qualityinstructions
(optional string[]): Instructions to adjust translation behaviorsource_hint
(optional string): Guidance for language detection
Returns: Translated text blocks maintaining the original structure
</details>Translation Memories Tools
<details> <summary><strong>list_memories</strong> - List saved translation memories</summary>Returns: Array of memories and their details
</details> <details> <summary><strong>create_memory</strong> - Create a new translation memory</summary>Inputs:
name
(string): Name of the new memoryexternal_id
(optional string): ID of the memory to import from MyMemory (e.g., 'ext_my_[MyMemory ID]')
Returns: Created memory data
</details> <details> <summary><strong>update_memory</strong> - Update translation memory name</summary>Inputs:
id
(string): ID of the memory to updatename
(string): The new name for the memory
Returns: Updated memory data
</details> <details> <summary><strong>delete_memory</strong> - Delete a translation memory</summary>Inputs:
id
(string): ID of the memory to delete
Returns: Deleted memory data
</details> <details> <summary><strong>add_translation</strong> - Add a translation unit to memory</summary>Inputs:
id
(string | string[]): ID or IDs of memories where to add the translation unitsource
(string): Source language codetarget
(string): Target language codesentence
(string): The source sentencetranslation
(string): The translated sentencetuid
(optional string): Translation Unit unique identifiersentence_before
(optional string): Context sentence beforesentence_after
(optional string): Context sentence after
Returns: Added translation details
</details> <details> <summary><strong>delete_translation</strong> - Delete a translation unit from memory</summary>Inputs:
id
(string): ID of the memorysource
(string): Source language codetarget
(string): Target language codesentence
(string): The source sentencetranslation
(string): The translated sentencetuid
(optional string): Translation Unit unique identifiersentence_before
(optional string): Context sentence beforesentence_after
(optional string): Context sentence after
Returns: Removed translation details
</details> <details> <summary><strong>import_tmx</strong> - Import a TMX file into a memory</summary>Inputs:
id
(string): ID of the memory to updatetmx
(file path): The path of the TMX file to uploadgzip
(boolean): Indicates if the file is compressed (.gz)
Returns: Import details
</details> <details> <summary><strong>check_import_status</strong> - Checks the status of a TMX file import</summary>Inputs:
id
(string): The ID of the import job
Returns: Import details
</details>🚀 Getting Started
📋 Requirements
- Lara Translate API Credentials
- To get them you can refer to the Official Documentation
- An LLM client that supports Model Context Protocol (MCP), such as Claude Desktop, Cursors, or GitHub Copilot
- NPX or Docker (depending on your preferred installation method)
🔌 Installation
Introduction
The installation process is standardized across all MCP clients. It involves manually adding a configuration object to your client's MCP configuration JSON file.
If you're unsure how to configure an MCP with your client, please refer to your MCP client's official documentation.
Lara Translate MCP supports multiple installation methods, including NPX and Docker.
Below, we'll use NPX as an example.
Installation & Configuration
Step 1: Open your client's MCP configuration JSON file with a text editor, then copy and paste the following snippet:
{
"mcpServers": {
"lara-translate": {
"command": "npx",
"args": [
"-y",
"@translated/lara-mcp@latest"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
Step 2: Replace <YOUR_ACCESS_KEY_ID>
and <YOUR_ACCESS_KEY_SECRET>
with your Lara Translate API credentials (refer to the Official Documentation for details).
Step 3: Restart your MCP client.
Verify Installation
After restarting your MCP client, you should see Lara Translate MCP in the list of available MCPs.
The method for viewing installed MCPs varies by client. Please consult your MCP client's documentation.
To verify that Lara Translate MCP is working correctly, try translating with a simple prompt:
Translate with Lara "Hello world" to Spanish
Your MCP client will begin generating a response. If Lara Translate MCP is properly installed and configured, your client will either request approval for the action or display a notification that Lara Translate is being used.
🧩 Installation Engines
<details> <summary><strong>Option 1: Using NPX</strong></summary>This option requires Node.js to be installed on your system.
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "npx",
"args": ["-y", "@translated/lara-mcp@latest"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
This option requires Docker to be installed on your system.
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"translatednet/lara-mcp:latest"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
Using Node.js
- Clone the repository:
git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
- Install dependencies and build:
### Install dependencies
pnpm install
### Build
pnpm run build
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "node",
"args": ["<FULL_PATH_TO_PROJECT_FOLDER>/dist/index.js"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace:
<FULL_PATH_TO_PROJECT_FOLDER>
with the absolute path to your project folder<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
Building a Docker Image
- Clone the repository:
git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
- Build the Docker image:
docker build -t lara-mcp .
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"lara-mcp"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual credentials.
💻 Popular Clients that supports MCPs
For a complete list of MCP clients and their feature support, visit the official MCP clients page.
| Client | Description | |-|| | Claude Desktop | Desktop application for Claude AI | | Aixplain | Production-ready AI Agents | | Cursor | AI-first code editor | | Cline for VS Code | VS Code extension for AI assistance | | GitHub Copilot MCP | VS Code extension for GitHub Copilot MCP integration | | Windsurf | AI-powered code editor and development environment |
🆘 Support
- For issues with Lara Translate API: Visit Lara Translate API and Integrations Support
- For issues with this MCP Server: Open an issue on GitHub
Server配置
{
"mcpServers": {
"lara-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--translated--lara-mcp--lara-mcp",
"pnpm run start"
],
"env": {
"LARA_ACCESS_KEY_ID": "lara-access-key-id",
"LARA_ACCESS_KEY_SECRET": "lara-access-key-secret"
}
}
}
}