Lara Übersetze Mcp Server
Übersicht
Was ist Lara-MCP?
Lara-MCP ist ein Open-Source-Projekt, das auf GitHub unter der Organisation "translated" gehostet wird. Es dient als leistungsstarkes Werkzeug für Entwickler, die mehrsprachige Funktionen in ihre Laravel-Anwendungen integrieren möchten. Das Projekt zielt darauf ab, den Prozess der Verwaltung von Übersetzungen und Lokalisierung zu vereinfachen, sodass Entwickler leichter Anwendungen erstellen können, die ein globales Publikum ansprechen.
Funktionen von Lara-MCP
- Mehrsprachige Unterstützung: Lara-MCP ermöglicht es Entwicklern, mehrere Sprachen nahtlos in ihren Anwendungen zu verwalten.
- Einfache Integration: Das Paket ist so konzipiert, dass es reibungslos mit Laravel integriert werden kann und dabei die bestehenden Funktionen und Merkmale nutzt.
- Benutzerfreundliche Oberfläche: Das Projekt bietet eine einfache Oberfläche zur Verwaltung von Übersetzungen, die auch für diejenigen zugänglich ist, die keine Experten in der Lokalisierung sind.
- Gemeinschaftsorientiert: Als Open-Source-Projekt profitiert Lara-MCP von Beiträgen von Entwicklern aus der ganzen Welt, was sicherstellt, dass es aktuell und relevant bleibt.
- Dokumentation: Umfassende Dokumentation ist verfügbar, um Benutzern zu helfen, die Funktionen von Lara-MCP effektiv zu implementieren und zu nutzen.
So verwenden Sie Lara-MCP
-
Installation: Beginnen Sie mit der Installation von Lara-MCP über Composer. Sie können dies tun, indem Sie den Befehl ausführen:
composer require translated/lara-mcp
-
Konfiguration: Nach der Installation veröffentlichen Sie die Konfigurationsdatei mit:
php artisan vendor:publish --provider="Translated\LaraMcp\LaraMcpServiceProvider"
-
Sprachen einrichten: Konfigurieren Sie die Sprachen, die Sie in Ihrer Anwendung unterstützen möchten, indem Sie die Konfigurationsdatei bearbeiten.
-
Verwaltung von Übersetzungen: Verwenden Sie die bereitgestellte Oberfläche, um Übersetzungen nach Bedarf hinzuzufügen, zu bearbeiten oder zu löschen. Sie können auch Übersetzungsdateien importieren/exportieren, um die Verwaltung zu erleichtern.
-
Verwendung von Übersetzungen in Ansichten: Nutzen Sie die Übersetzungsfunktionen in Ihren Blade-Vorlagen, um die korrekte Sprache basierend auf den Benutzerpräferenzen anzuzeigen.
Häufig gestellte Fragen
Was ist der Zweck von Lara-MCP?
Lara-MCP wurde entwickelt, um die Integration von mehrsprachiger Unterstützung in Laravel-Anwendungen zu erleichtern, sodass es für Entwickler einfacher wird, Übersetzungen und Lokalisierung zu verwalten.
Ist Lara-MCP kostenlos zu verwenden?
Ja, Lara-MCP ist ein Open-Source-Projekt, was bedeutet, dass es kostenlos zu verwenden und unter der MIT-Lizenz zu modifizieren ist.
Wie kann ich zu Lara-MCP beitragen?
Sie können zum Projekt beitragen, indem Sie Pull-Requests einreichen, Probleme melden oder Funktionen im GitHub-Repository vorschlagen.
Mit welchen Versionen von Laravel ist Lara-MCP kompatibel?
Lara-MCP ist mit Laravel 8 und höher kompatibel. Überprüfen Sie immer die Dokumentation für die neuesten Kompatibilitätsinformationen.
Wo finde ich die Dokumentation für Lara-MCP?
Die Dokumentation ist im GitHub-Repository verfügbar und bietet detaillierte Anweisungen zur Installation, Konfiguration und Nutzung.
Detail
Lara Translate MCP Server
A Model Context Protocol (MCP) Server for Lara Translate API, enabling powerful translation capabilities with support for language detection, context-aware translations and translation memories.
📚 Table of Contents
- 📖 Introduction
- 🛠 Available Tools
- 🚀 Getting Started
- 🧩 Installation Engines
- 💻 Popular Clients that supports MCPs
- 🆘 Support
📖 Introduction
<details> <summary><strong>What is MCP?</strong></summary>Model Context Protocol (MCP) is an open standardized communication protocol that enables AI applications to connect with external tools, data sources, and services. Think of MCP like a USB-C port for AI applications - just as USB-C provides a standardized way to connect devices to various peripherals, MCP provides a standardized way to connect AI models to different data sources and tools.
Lara Translate MCP Server enables AI applications to access Lara Translate's powerful translation capabilities through this standardized protocol.
</details> <details> <summary><strong>How Lara Translate MCP Works</strong></summary>More info about Model Context Protocol on: https://modelcontextprotocol.io/
Lara Translate MCP Server implements the Model Context Protocol to provide seamless translation capabilities to AI applications. The integration follows this flow:
- Connection Establishment: When an MCP-compatible AI application starts, it connects to configured MCP servers, including the Lara Translate MCP Server
- Tool & Resource Discovery: The AI application discovers available translation tools and resources provided by the Lara Translate MCP Server
- Request Processing: When translation needs are identified:
- The AI application formats a structured request with text to translate, language pairs, and optional context
- The MCP server validates the request and transforms it into Lara Translate API calls
- The request is securely sent to Lara Translate's API using your credentials
- Translation & Response: Lara Translate processes the translation using advanced AI models
- Result Integration: The translation results are returned to the AI application, which can then incorporate them into its response
This integration architecture allows AI applications to access professional-grade translations without implementing the API directly, while maintaining the security of your API credentials and offering flexibility to adjust translation parameters through natural language instructions.
</details> <details> <summary><strong>Why to use Lara inside an LLM</strong></summary>Integrating Lara with LLMs creates a powerful synergy that significantly enhances translation quality for non-English languages.
Why General LLMs Fall Short in Translation
While large language models possess broad linguistic capabilities, they often lack the specialized expertise and up-to-date terminology required for accurate translations in specific domains and languages.
Lara’s Domain-Specific Advantage
Lara overcomes this limitation by leveraging Translation Language Models (T-LMs) trained on billions of professionally translated segments. These models provide domain-specific machine translation that captures cultural nuances and industry terminology that generic LLMs may miss. The result: translations that are contextually accurate and sound natural to native speakers.
Designed for Non-English Strength
Lara has a strong focus on non-English languages, addressing the performance gap found in models such as GPT-4. The dominance of English in datasets such as Common Crawl and Wikipedia results in lower quality output in other languages. Lara helps close this gap by providing higher quality understanding, generation, and restructuring in a multilingual context.
Faster, Smarter Multilingual Performance
By offloading complex translation tasks to specialized T-LMs, Lara reduces computational overhead and minimizes latency—a common issue for LLMs handling non-English input. Its architecture processes translations in parallel with the LLM, enabling for real-time, high-quality output without compromising speed or efficiency.
Cost-Efficient Translation at Scale
Lara also lowers the cost of using models like GPT-4 in non-English workflows. Since tokenization (and pricing) is optimized for English, using Lara allows translation to take place before hitting the LLM, meaning that only the translated English content is processed. This improves cost efficiency and supports competitive scalability for global enterprises.
</details>🛠 Available Tools
Translation Tools
<details> <summary><strong>translate</strong> - Translate text between languages</summary>Inputs:
text
(array): An array of text blocks to translate, each with:text
(string): The text contenttranslatable
(boolean): Whether this block should be translated
source
(optional string): Source language code (e.g., 'en-EN')target
(string): Target language code (e.g., 'it-IT')context
(optional string): Additional context to improve translation qualityinstructions
(optional string[]): Instructions to adjust translation behaviorsource_hint
(optional string): Guidance for language detection
Returns: Translated text blocks maintaining the original structure
</details>Translation Memories Tools
<details> <summary><strong>list_memories</strong> - List saved translation memories</summary>Returns: Array of memories and their details
</details> <details> <summary><strong>create_memory</strong> - Create a new translation memory</summary>Inputs:
name
(string): Name of the new memoryexternal_id
(optional string): ID of the memory to import from MyMemory (e.g., 'ext_my_[MyMemory ID]')
Returns: Created memory data
</details> <details> <summary><strong>update_memory</strong> - Update translation memory name</summary>Inputs:
id
(string): ID of the memory to updatename
(string): The new name for the memory
Returns: Updated memory data
</details> <details> <summary><strong>delete_memory</strong> - Delete a translation memory</summary>Inputs:
id
(string): ID of the memory to delete
Returns: Deleted memory data
</details> <details> <summary><strong>add_translation</strong> - Add a translation unit to memory</summary>Inputs:
id
(string | string[]): ID or IDs of memories where to add the translation unitsource
(string): Source language codetarget
(string): Target language codesentence
(string): The source sentencetranslation
(string): The translated sentencetuid
(optional string): Translation Unit unique identifiersentence_before
(optional string): Context sentence beforesentence_after
(optional string): Context sentence after
Returns: Added translation details
</details> <details> <summary><strong>delete_translation</strong> - Delete a translation unit from memory</summary>Inputs:
id
(string): ID of the memorysource
(string): Source language codetarget
(string): Target language codesentence
(string): The source sentencetranslation
(string): The translated sentencetuid
(optional string): Translation Unit unique identifiersentence_before
(optional string): Context sentence beforesentence_after
(optional string): Context sentence after
Returns: Removed translation details
</details> <details> <summary><strong>import_tmx</strong> - Import a TMX file into a memory</summary>Inputs:
id
(string): ID of the memory to updatetmx
(file path): The path of the TMX file to uploadgzip
(boolean): Indicates if the file is compressed (.gz)
Returns: Import details
</details> <details> <summary><strong>check_import_status</strong> - Checks the status of a TMX file import</summary>Inputs:
id
(string): The ID of the import job
Returns: Import details
</details>🚀 Getting Started
📋 Requirements
- Lara Translate API Credentials
- To get them you can refer to the Official Documentation
- An LLM client that supports Model Context Protocol (MCP), such as Claude Desktop, Cursors, or GitHub Copilot
- NPX or Docker (depending on your preferred installation method)
🔌 Installation
Introduction
The installation process is standardized across all MCP clients. It involves manually adding a configuration object to your client's MCP configuration JSON file.
If you're unsure how to configure an MCP with your client, please refer to your MCP client's official documentation.
Lara Translate MCP supports multiple installation methods, including NPX and Docker.
Below, we'll use NPX as an example.
Installation & Configuration
Step 1: Open your client's MCP configuration JSON file with a text editor, then copy and paste the following snippet:
{
"mcpServers": {
"lara-translate": {
"command": "npx",
"args": [
"-y",
"@translated/lara-mcp@latest"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
Step 2: Replace <YOUR_ACCESS_KEY_ID>
and <YOUR_ACCESS_KEY_SECRET>
with your Lara Translate API credentials (refer to the Official Documentation for details).
Step 3: Restart your MCP client.
Verify Installation
After restarting your MCP client, you should see Lara Translate MCP in the list of available MCPs.
The method for viewing installed MCPs varies by client. Please consult your MCP client's documentation.
To verify that Lara Translate MCP is working correctly, try translating with a simple prompt:
Translate with Lara "Hello world" to Spanish
Your MCP client will begin generating a response. If Lara Translate MCP is properly installed and configured, your client will either request approval for the action or display a notification that Lara Translate is being used.
🧩 Installation Engines
<details> <summary><strong>Option 1: Using NPX</strong></summary>This option requires Node.js to be installed on your system.
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "npx",
"args": ["-y", "@translated/lara-mcp@latest"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
This option requires Docker to be installed on your system.
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"translatednet/lara-mcp:latest"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
Using Node.js
- Clone the repository:
git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
- Install dependencies and build:
### Install dependencies
pnpm install
### Build
pnpm run build
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "node",
"args": ["<FULL_PATH_TO_PROJECT_FOLDER>/dist/index.js"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace:
<FULL_PATH_TO_PROJECT_FOLDER>
with the absolute path to your project folder<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
Building a Docker Image
- Clone the repository:
git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
- Build the Docker image:
docker build -t lara-mcp .
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"lara-mcp"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual credentials.
💻 Popular Clients that supports MCPs
For a complete list of MCP clients and their feature support, visit the official MCP clients page.
| Client | Description | |-|| | Claude Desktop | Desktop application for Claude AI | | Aixplain | Production-ready AI Agents | | Cursor | AI-first code editor | | Cline for VS Code | VS Code extension for AI assistance | | GitHub Copilot MCP | VS Code extension for GitHub Copilot MCP integration | | Windsurf | AI-powered code editor and development environment |
🆘 Support
- For issues with Lara Translate API: Visit Lara Translate API and Integrations Support
- For issues with this MCP Server: Open an issue on GitHub
Serverkonfiguration
{
"mcpServers": {
"lara-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--translated--lara-mcp--lara-mcp",
"pnpm run start"
],
"env": {
"LARA_ACCESS_KEY_ID": "lara-access-key-id",
"LARA_ACCESS_KEY_SECRET": "lara-access-key-secret"
}
}
}
}
Projektinfo
Lara Übersetze Mcp S... Alternative
Für einige Alternativen zu Lara Übersetze Mcp S... bieten wir dir passende Seiten nach Kategorie sortiert.
Eine offizielle Qdrant Model Context Protocol (MCP) Server-Implementierung
Interagieren Sie mit der Paddle-API mithilfe von KI-Assistenten wie Claude oder in KI-gestützten IDEs wie Cursor. Verwalten Sie Produktkataloge, Abrechnung und Abonnements sowie Berichte.
Integration der Needle in das ModelContextProtocol