Logfire Mcp Server
Overview
What is Logfire MCP?
Logfire MCP is an innovative server solution developed by the Pydantic organization. It serves as a robust platform designed to enhance logging capabilities and streamline data management processes. With its user-friendly interface and powerful features, Logfire MCP aims to simplify the complexities of log management for developers and organizations alike.
Features of Logfire MCP
- User-Friendly Interface: Logfire MCP offers an intuitive interface that allows users to easily navigate through its features and functionalities.
- Real-Time Logging: The server provides real-time logging capabilities, enabling users to monitor and analyze logs as they occur.
- Data Management: Logfire MCP simplifies data management by allowing users to categorize, filter, and search logs efficiently.
- Integration Capabilities: The server can be integrated with various applications and services, enhancing its functionality and usability.
- Scalability: Logfire MCP is designed to scale with your needs, accommodating growing data volumes without compromising performance.
How to Use Logfire MCP
- Installation: Begin by downloading the Logfire MCP server from the official Pydantic repository. Follow the installation instructions provided in the documentation.
- Configuration: Configure the server settings according to your requirements. This includes setting up logging parameters, data storage options, and integration settings.
- Start Logging: Once configured, start the server and begin logging your application data. Utilize the real-time logging feature to monitor logs as they are generated.
- Analyze Logs: Use the built-in tools to analyze and manage your logs. You can filter, search, and categorize logs to gain insights into your application's performance.
- Integrate with Other Tools: If needed, integrate Logfire MCP with other tools and services to enhance its capabilities and streamline your workflow.
Frequently Asked Questions
Q: What programming languages does Logfire MCP support?
A: Logfire MCP is designed to work with multiple programming languages, making it versatile for various development environments.
Q: Is Logfire MCP open-source?
A: Yes, Logfire MCP is a public repository, allowing developers to contribute and modify the code as needed.
Q: How can I report issues or contribute to Logfire MCP?
A: You can report issues or contribute to the project by visiting the GitHub repository and following the contribution guidelines provided.
Q: What are the system requirements for running Logfire MCP?
A: The system requirements may vary based on the scale of your application, but generally, it requires a server with adequate processing power and memory to handle logging operations efficiently.
Q: Where can I find the documentation for Logfire MCP?
A: The documentation for Logfire MCP is available on the GitHub repository, providing detailed instructions on installation, configuration, and usage.
Details
Logfire MCP Server
This repository contains a Model Context Protocol (MCP) server with tools that can access the OpenTelemetry traces and metrics you've sent to Logfire.
<a href="https://glama.ai/mcp/servers/@pydantic/logfire-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@pydantic/logfire-mcp/badge" alt="Logfire Server MCP server" /> </a>This MCP server enables LLMs to retrieve your application's telemetry data, analyze distributed traces, and make use of the results of arbitrary SQL queries executed using the Logfire APIs.
Available Tools
-
find_exceptions_in_file
- Get detailed trace information about exceptions in a specific file- Required arguments:
filepath
(string): Path to the file to analyzeage
(int): Number of minutes to look back (max 7 days)
- Required arguments:
-
arbitrary_query
- Run custom SQL queries on your OpenTelemetry traces and metrics- Required arguments:
query
(string): SQL query to executeage
(int): Number of minutes to look back (max 7 days)
- Required arguments:
-
get_logfire_records_schema
- Get the OpenTelemetry schema to help with custom queries- No required arguments
Setup
Install uv
The first thing to do is make sure uv
is installed, as uv
is used to run the MCP server.
For installation instructions, see the uv
installation docs.
If you already have an older version of uv
installed, you might need to update it with uv self update
.
Obtain a Logfire read token
In order to make requests to the Logfire APIs, the Logfire MCP server requires a "read token".
You can create one under the "Read Tokens" section of your project settings in Logfire: https://logfire.pydantic.dev/-/redirect/latest-project/settings/read-tokens
[!IMPORTANT] Logfire read tokens are project-specific, so you need to create one for the specific project you want to expose to the Logfire MCP server.
Manually run the server
Once you have uv
installed and have a Logfire read token, you can manually run the MCP server using uvx
(which is provided by uv
).
You can specify your read token using the LOGFIRE_READ_TOKEN
environment variable:
LOGFIRE_READ_TOKEN=YOUR_READ_TOKEN uvx logfire-mcp@latest
or using the --read-token
flag:
uvx logfire-mcp@latest --read-token=YOUR_READ_TOKEN
[!NOTE] If you are using Cursor, Claude Desktop, Cline, or other MCP clients that manage your MCP servers for you, you do NOT need to manually run the server yourself. The next section will show you how to configure these clients to make use of the Logfire MCP server.
Configuration with well-known MCP clients
Configure for Cursor
Create a .cursor/mcp.json
file in your project root:
{
"mcpServers": {
"logfire": {
"command": "uvx",
"args": ["logfire-mcp@latest", "--read-token=YOUR-TOKEN"]
}
}
}
The Cursor doesn't accept the env
field, so you need to use the --read-token
flag instead.
Configure for Claude Desktop
Add to your Claude settings:
{
"command": ["uvx"],
"args": ["logfire-mcp@latest"],
"type": "stdio",
"env": {
"LOGFIRE_READ_TOKEN": "YOUR_TOKEN"
}
}
Configure for Cline
Add to your Cline settings in cline_mcp_settings.json
:
{
"mcpServers": {
"logfire": {
"command": "uvx",
"args": ["logfire-mcp@latest"],
"env": {
"LOGFIRE_READ_TOKEN": "YOUR_TOKEN"
},
"disabled": false,
"autoApprove": []
}
}
}
Configure for VS Code
Make sure you enabled MCP support in VS Code.
Create a .vscode/mcp.json
file in your project's root directory:
{
"servers": {
"logfire": {
"type": "stdio",
"command": "uvx", // or the absolute /path/to/uvx
"args": ["logfire-mcp@latest"],
"env": {
"LOGFIRE_READ_TOKEN": "YOUR_TOKEN",
"LOGFIRE_BASE_URL": "https://api-eu.pydantic.dev" // choose the correct base url
}
}
}
}
Customization - Base URL
By default, the server connects to the Logfire API at https://api-us.pydantic.dev
. You can override this by:
- Using the
--base-url
argument:
uvx logfire-mcp@latest --base-url=https://your-logfire-instance.com
- Setting the environment variable:
LOGFIRE_BASE_URL=https://your-logfire-instance.com uvx logfire-mcp@latest
Example Interactions
- Get details about exceptions from traces in a specific file:
{
"name": "find_exceptions_in_file",
"arguments": {
"filepath": "app/api.py",
"age": 1440
}
}
Response:
[
{
"created_at": "2024-03-20T10:30:00Z",
"message": "Failed to process request",
"exception_type": "ValueError",
"exception_message": "Invalid input format",
"function_name": "process_request",
"line_number": "42",
"attributes": {
"service.name": "api-service",
"code.filepath": "app/api.py"
},
"trace_id": "1234567890abcdef"
}
]
- Run a custom query on traces:
{
"name": "arbitrary_query",
"arguments": {
"query": "SELECT trace_id, message, created_at, attributes->>'service.name' as service FROM records WHERE severity_text = 'ERROR' ORDER BY created_at DESC LIMIT 10",
"age": 1440
}
}
Examples of Questions for Claude
- "What exceptions occurred in traces from the last hour across all services?"
- "Show me the recent errors in the file 'app/api.py' with their trace context"
- "How many errors were there in the last 24 hours per service?"
- "What are the most common exception types in my traces, grouped by service name?"
- "Get me the OpenTelemetry schema for traces and metrics"
- "Find all errors from yesterday and show their trace contexts"
Getting Started
-
First, obtain a Logfire read token from: https://logfire.pydantic.dev/-/redirect/latest-project/settings/read-tokens
-
Run the MCP server:
uvx logfire-mcp@latest --read-token=YOUR_TOKEN
-
Configure your preferred client (Cursor, Claude Desktop, or Cline) using the configuration examples above
-
Start using the MCP server to analyze your OpenTelemetry traces and metrics!
Contributing
We welcome contributions to help improve the Logfire MCP server. Whether you want to add new trace analysis tools, enhance metrics querying functionality, or improve documentation, your input is valuable.
For examples of other MCP servers and implementation patterns, see the Model Context Protocol servers repository.
License
Logfire MCP is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License.
Server Config
{
"mcpServers": {
"logfire-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--pydantic--logfire-mcp--logfire-mcp",
"logfire-mcp"
],
"env": {}
}
}
}