Lara Traducir Servidor Mcp
Resumen
¿Qué es Lara-MCP?
Lara-MCP es un proyecto de código abierto alojado en GitHub bajo la organización "translated." Sirve como una herramienta poderosa diseñada para desarrolladores que desean integrar capacidades multilingües en sus aplicaciones Laravel. El proyecto tiene como objetivo simplificar el proceso de gestión de traducciones y localización, facilitando a los desarrolladores la creación de aplicaciones que atiendan a una audiencia global.
Características de Lara-MCP
- Soporte Multilingüe: Lara-MCP permite a los desarrolladores gestionar múltiples idiomas dentro de sus aplicaciones sin problemas.
- Integración Fácil: El paquete está diseñado para integrarse sin problemas con Laravel, aprovechando sus características y funcionalidades existentes.
- Interfaz Amigable: El proyecto proporciona una interfaz sencilla para gestionar traducciones, haciéndolo accesible incluso para aquellos que no son expertos en localización.
- Impulsado por la Comunidad: Al ser un proyecto de código abierto, Lara-MCP se beneficia de las contribuciones de desarrolladores de todo el mundo, asegurando que se mantenga actualizado y relevante.
- Documentación: Hay documentación completa disponible para ayudar a los usuarios a entender cómo implementar y utilizar las características de Lara-MCP de manera efectiva.
Cómo Usar Lara-MCP
-
Instalación: Comienza instalando Lara-MCP a través de Composer. Puedes hacerlo ejecutando el comando:
composer require translated/lara-mcp
-
Configuración: Después de la instalación, publica el archivo de configuración usando:
php artisan vendor:publish --provider="Translated\LaraMcp\LaraMcpServiceProvider"
-
Configuración de Idiomas: Configura los idiomas que deseas soportar en tu aplicación editando el archivo de configuración.
-
Gestión de Traducciones: Utiliza la interfaz proporcionada para agregar, editar o eliminar traducciones según sea necesario. También puedes importar/exportar archivos de traducción para una gestión más fácil.
-
Usando Traducciones en Vistas: Utiliza las funciones de traducción en tus plantillas Blade para mostrar el idioma correcto según las preferencias del usuario.
Preguntas Frecuentes
¿Cuál es el propósito de Lara-MCP?
Lara-MCP está diseñado para facilitar la integración de soporte multilingüe en aplicaciones Laravel, haciendo más fácil para los desarrolladores gestionar traducciones y localización.
¿Es Lara-MCP gratuito para usar?
Sí, Lara-MCP es un proyecto de código abierto, lo que significa que es gratuito para usar y modificar bajo la licencia MIT.
¿Cómo puedo contribuir a Lara-MCP?
Puedes contribuir al proyecto enviando solicitudes de extracción, reportando problemas o sugiriendo características en el repositorio de GitHub.
¿Con qué versiones de Laravel es compatible Lara-MCP?
Lara-MCP es compatible con Laravel 8 y versiones superiores. Siempre verifica la documentación para obtener la información más reciente sobre compatibilidad.
¿Dónde puedo encontrar la documentación de Lara-MCP?
La documentación está disponible en el repositorio de GitHub, proporcionando instrucciones detalladas sobre instalación, configuración y uso.
Detalle
Lara Translate MCP Server
A Model Context Protocol (MCP) Server for Lara Translate API, enabling powerful translation capabilities with support for language detection, context-aware translations and translation memories.
📚 Table of Contents
- 📖 Introduction
- 🛠 Available Tools
- 🚀 Getting Started
- 🧩 Installation Engines
- 💻 Popular Clients that supports MCPs
- 🆘 Support
📖 Introduction
<details> <summary><strong>What is MCP?</strong></summary>Model Context Protocol (MCP) is an open standardized communication protocol that enables AI applications to connect with external tools, data sources, and services. Think of MCP like a USB-C port for AI applications - just as USB-C provides a standardized way to connect devices to various peripherals, MCP provides a standardized way to connect AI models to different data sources and tools.
Lara Translate MCP Server enables AI applications to access Lara Translate's powerful translation capabilities through this standardized protocol.
</details> <details> <summary><strong>How Lara Translate MCP Works</strong></summary>More info about Model Context Protocol on: https://modelcontextprotocol.io/
Lara Translate MCP Server implements the Model Context Protocol to provide seamless translation capabilities to AI applications. The integration follows this flow:
- Connection Establishment: When an MCP-compatible AI application starts, it connects to configured MCP servers, including the Lara Translate MCP Server
- Tool & Resource Discovery: The AI application discovers available translation tools and resources provided by the Lara Translate MCP Server
- Request Processing: When translation needs are identified:
- The AI application formats a structured request with text to translate, language pairs, and optional context
- The MCP server validates the request and transforms it into Lara Translate API calls
- The request is securely sent to Lara Translate's API using your credentials
- Translation & Response: Lara Translate processes the translation using advanced AI models
- Result Integration: The translation results are returned to the AI application, which can then incorporate them into its response
This integration architecture allows AI applications to access professional-grade translations without implementing the API directly, while maintaining the security of your API credentials and offering flexibility to adjust translation parameters through natural language instructions.
</details> <details> <summary><strong>Why to use Lara inside an LLM</strong></summary>Integrating Lara with LLMs creates a powerful synergy that significantly enhances translation quality for non-English languages.
Why General LLMs Fall Short in Translation
While large language models possess broad linguistic capabilities, they often lack the specialized expertise and up-to-date terminology required for accurate translations in specific domains and languages.
Lara’s Domain-Specific Advantage
Lara overcomes this limitation by leveraging Translation Language Models (T-LMs) trained on billions of professionally translated segments. These models provide domain-specific machine translation that captures cultural nuances and industry terminology that generic LLMs may miss. The result: translations that are contextually accurate and sound natural to native speakers.
Designed for Non-English Strength
Lara has a strong focus on non-English languages, addressing the performance gap found in models such as GPT-4. The dominance of English in datasets such as Common Crawl and Wikipedia results in lower quality output in other languages. Lara helps close this gap by providing higher quality understanding, generation, and restructuring in a multilingual context.
Faster, Smarter Multilingual Performance
By offloading complex translation tasks to specialized T-LMs, Lara reduces computational overhead and minimizes latency—a common issue for LLMs handling non-English input. Its architecture processes translations in parallel with the LLM, enabling for real-time, high-quality output without compromising speed or efficiency.
Cost-Efficient Translation at Scale
Lara also lowers the cost of using models like GPT-4 in non-English workflows. Since tokenization (and pricing) is optimized for English, using Lara allows translation to take place before hitting the LLM, meaning that only the translated English content is processed. This improves cost efficiency and supports competitive scalability for global enterprises.
</details>🛠 Available Tools
Translation Tools
<details> <summary><strong>translate</strong> - Translate text between languages</summary>Inputs:
text
(array): An array of text blocks to translate, each with:text
(string): The text contenttranslatable
(boolean): Whether this block should be translated
source
(optional string): Source language code (e.g., 'en-EN')target
(string): Target language code (e.g., 'it-IT')context
(optional string): Additional context to improve translation qualityinstructions
(optional string[]): Instructions to adjust translation behaviorsource_hint
(optional string): Guidance for language detection
Returns: Translated text blocks maintaining the original structure
</details>Translation Memories Tools
<details> <summary><strong>list_memories</strong> - List saved translation memories</summary>Returns: Array of memories and their details
</details> <details> <summary><strong>create_memory</strong> - Create a new translation memory</summary>Inputs:
name
(string): Name of the new memoryexternal_id
(optional string): ID of the memory to import from MyMemory (e.g., 'ext_my_[MyMemory ID]')
Returns: Created memory data
</details> <details> <summary><strong>update_memory</strong> - Update translation memory name</summary>Inputs:
id
(string): ID of the memory to updatename
(string): The new name for the memory
Returns: Updated memory data
</details> <details> <summary><strong>delete_memory</strong> - Delete a translation memory</summary>Inputs:
id
(string): ID of the memory to delete
Returns: Deleted memory data
</details> <details> <summary><strong>add_translation</strong> - Add a translation unit to memory</summary>Inputs:
id
(string | string[]): ID or IDs of memories where to add the translation unitsource
(string): Source language codetarget
(string): Target language codesentence
(string): The source sentencetranslation
(string): The translated sentencetuid
(optional string): Translation Unit unique identifiersentence_before
(optional string): Context sentence beforesentence_after
(optional string): Context sentence after
Returns: Added translation details
</details> <details> <summary><strong>delete_translation</strong> - Delete a translation unit from memory</summary>Inputs:
id
(string): ID of the memorysource
(string): Source language codetarget
(string): Target language codesentence
(string): The source sentencetranslation
(string): The translated sentencetuid
(optional string): Translation Unit unique identifiersentence_before
(optional string): Context sentence beforesentence_after
(optional string): Context sentence after
Returns: Removed translation details
</details> <details> <summary><strong>import_tmx</strong> - Import a TMX file into a memory</summary>Inputs:
id
(string): ID of the memory to updatetmx
(file path): The path of the TMX file to uploadgzip
(boolean): Indicates if the file is compressed (.gz)
Returns: Import details
</details> <details> <summary><strong>check_import_status</strong> - Checks the status of a TMX file import</summary>Inputs:
id
(string): The ID of the import job
Returns: Import details
</details>🚀 Getting Started
📋 Requirements
- Lara Translate API Credentials
- To get them you can refer to the Official Documentation
- An LLM client that supports Model Context Protocol (MCP), such as Claude Desktop, Cursors, or GitHub Copilot
- NPX or Docker (depending on your preferred installation method)
🔌 Installation
Introduction
The installation process is standardized across all MCP clients. It involves manually adding a configuration object to your client's MCP configuration JSON file.
If you're unsure how to configure an MCP with your client, please refer to your MCP client's official documentation.
Lara Translate MCP supports multiple installation methods, including NPX and Docker.
Below, we'll use NPX as an example.
Installation & Configuration
Step 1: Open your client's MCP configuration JSON file with a text editor, then copy and paste the following snippet:
{
"mcpServers": {
"lara-translate": {
"command": "npx",
"args": [
"-y",
"@translated/lara-mcp@latest"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
Step 2: Replace <YOUR_ACCESS_KEY_ID>
and <YOUR_ACCESS_KEY_SECRET>
with your Lara Translate API credentials (refer to the Official Documentation for details).
Step 3: Restart your MCP client.
Verify Installation
After restarting your MCP client, you should see Lara Translate MCP in the list of available MCPs.
The method for viewing installed MCPs varies by client. Please consult your MCP client's documentation.
To verify that Lara Translate MCP is working correctly, try translating with a simple prompt:
Translate with Lara "Hello world" to Spanish
Your MCP client will begin generating a response. If Lara Translate MCP is properly installed and configured, your client will either request approval for the action or display a notification that Lara Translate is being used.
🧩 Installation Engines
<details> <summary><strong>Option 1: Using NPX</strong></summary>This option requires Node.js to be installed on your system.
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "npx",
"args": ["-y", "@translated/lara-mcp@latest"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
This option requires Docker to be installed on your system.
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"translatednet/lara-mcp:latest"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
Using Node.js
- Clone the repository:
git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
- Install dependencies and build:
### Install dependencies
pnpm install
### Build
pnpm run build
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "node",
"args": ["<FULL_PATH_TO_PROJECT_FOLDER>/dist/index.js"],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace:
<FULL_PATH_TO_PROJECT_FOLDER>
with the absolute path to your project folder<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual Lara API credentials.
Building a Docker Image
- Clone the repository:
git clone https://github.com/translated/lara-mcp.git
cd lara-mcp
- Build the Docker image:
docker build -t lara-mcp .
- Add the following to your MCP configuration file:
{
"mcpServers": {
"lara-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LARA_ACCESS_KEY_ID",
"-e",
"LARA_ACCESS_KEY_SECRET",
"lara-mcp"
],
"env": {
"LARA_ACCESS_KEY_ID": "<YOUR_ACCESS_KEY_ID>",
"LARA_ACCESS_KEY_SECRET": "<YOUR_ACCESS_KEY_SECRET>"
}
}
}
}
- Replace
<YOUR_ACCESS_KEY_ID>
and<YOUR_ACCESS_KEY_SECRET>
with your actual credentials.
💻 Popular Clients that supports MCPs
For a complete list of MCP clients and their feature support, visit the official MCP clients page.
| Client | Description | |-|| | Claude Desktop | Desktop application for Claude AI | | Aixplain | Production-ready AI Agents | | Cursor | AI-first code editor | | Cline for VS Code | VS Code extension for AI assistance | | GitHub Copilot MCP | VS Code extension for GitHub Copilot MCP integration | | Windsurf | AI-powered code editor and development environment |
🆘 Support
- For issues with Lara Translate API: Visit Lara Translate API and Integrations Support
- For issues with this MCP Server: Open an issue on GitHub
Configuración del Servidor
{
"mcpServers": {
"lara-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--translated--lara-mcp--lara-mcp",
"pnpm run start"
],
"env": {
"LARA_ACCESS_KEY_ID": "lara-access-key-id",
"LARA_ACCESS_KEY_SECRET": "lara-access-key-secret"
}
}
}
}