Tfmcp: Herramienta del Protocolo de Contexto del Modelo de Terraform
🌍 Herramienta de Protocolo de Contexto de Modelo de Terraform (MCP) - Una herramienta CLI experimental que permite a los asistentes de IA gestionar y operar entornos de Terraform. Soporta la lectura de configuraciones de Terraform, el análisis de planes, la aplicación de configuraciones y la gestión del estado con integración de Claude Desktop. ⚡️
Resumen
¿Qué es tfmcp?
El ### Terraform Model Context Protocol (MCP) Tool, comúnmente conocido como ### tfmcp, es una herramienta experimental de interfaz de línea de comandos (CLI) diseñada para mejorar la gestión y operación de entornos Terraform. Permite a los usuarios leer configuraciones de Terraform, analizar planes, aplicar configuraciones y gestionar el estado, todo mientras se integra sin problemas con asistentes de IA como Claude Desktop.
Características de tfmcp
- Integración de IA: tfmcp admite la integración con asistentes de IA, lo que permite una gestión más inteligente de los entornos Terraform.
- Gestión de Configuraciones: Los usuarios pueden leer y gestionar configuraciones de Terraform directamente a través de la CLI.
- Análisis de Planes: La herramienta proporciona capacidades para analizar planes de Terraform, ayudando a los usuarios a entender las implicaciones de sus cambios antes de aplicarlos.
- Gestión del Estado: tfmcp permite una gestión eficiente del estado de Terraform, asegurando que los usuarios puedan hacer un seguimiento de sus cambios en la infraestructura de manera efectiva.
- Interfaz Amigable: La CLI está diseñada para ser intuitiva, lo que la hace accesible tanto para nuevos usuarios como para usuarios experimentados.
Cómo Usar tfmcp
- Instalación: Comienza instalando tfmcp desde crates.io.
- Configuración: Configura tu entorno Terraform y asegúrate de que tus configuraciones estén listas para el análisis.
- Ejecución de Comandos: Usa los comandos de la CLI para leer configuraciones, analizar planes y aplicar cambios. Por ejemplo:
- Para leer una configuración:
tfmcp read <archivo_de_configuración>
- Para analizar un plan:
tfmcp analyze <archivo_de_plan>
- Para aplicar una configuración:
tfmcp apply <archivo_de_configuración>
- Para leer una configuración:
- Gestión del Estado: Utiliza tfmcp para gestionar tu estado de Terraform de manera efectiva, asegurando que tu infraestructura permanezca consistente.
Preguntas Frecuentes
¿Cuál es el propósito de tfmcp?
tfmcp está diseñado para facilitar la gestión de entornos Terraform al proporcionar herramientas para la lectura de configuraciones, análisis de planes y gestión del estado, todo mientras se integra con asistentes de IA.
¿Es tfmcp adecuado para principiantes?
Sí, tfmcp es amigable para el usuario y está diseñado para ser accesible para usuarios de todos los niveles de experiencia, incluidos aquellos nuevos en Terraform.
¿Se puede integrar tfmcp con otras herramientas?
Sí, tfmcp está construido para trabajar junto a asistentes de IA y puede integrarse en varios flujos de trabajo para mejorar la gestión de Terraform.
¿Dónde puedo encontrar más información sobre tfmcp?
Para más detalles, puedes visitar el repositorio de tfmcp en GitHub o consultar su documentación.
Detalle
tfmcp: Terraform Model Context Protocol Tool
⚠️ This project includes production-ready security features but is still under active development. While the security system provides robust protection, please review all operations carefully in production environments. ⚠️
tfmcp is a command-line tool that helps you interact with Terraform via the Model Context Protocol (MCP). It allows LLMs to manage and operate your Terraform environments, including:
🎮 Demo
See tfmcp in action with Claude Desktop:
- Reading Terraform configuration files
- Analyzing Terraform plan outputs
- Applying Terraform configurations
- Managing Terraform state
- Creating and modifying Terraform configurations
🎉 Latest Release
The latest version of tfmcp (v0.1.3) is now available on Crates.io! You can easily install it using Cargo:
cargo install tfmcp
🆕 What's New in v0.1.3
- 🔐 Comprehensive Security System: Production-ready security controls with audit logging
- 📊 Enhanced Terraform Analysis: Detailed validation and best practice recommendations
- 🛡️ Access Controls: File pattern-based restrictions and resource limits
- 📝 Audit Logging: Complete operation tracking for compliance and monitoring
Features
-
🚀 Terraform Integration
Deeply integrates with the Terraform CLI to analyze and execute operations. -
📄 MCP Server Capabilities
Runs as a Model Context Protocol server, allowing AI assistants to access and manage Terraform. -
🔐 Enterprise Security
Production-ready security controls with configurable policies, audit logging, and access restrictions. -
📊 Advanced Analysis
Detailed Terraform configuration analysis with best practice recommendations and security checks. -
⚡️ Blazing Fast
High-speed processing powered by the Rust ecosystem with optimized parsing and caching. -
🛠️ Automatic Setup
Automatically creates sample Terraform projects when needed, ensuring smooth operation even for new users. -
🐳 Docker Support
Run tfmcp in a containerized environment with all dependencies pre-installed.
Installation
From Source
### Clone the repository
git clone https://github.com/nwiizo/tfmcp
cd tfmcp
### Build and install
cargo install --path .
From Crates.io
cargo install tfmcp
Using Docker
### Clone the repository
git clone https://github.com/nwiizo/tfmcp
cd tfmcp
### Build the Docker image
docker build -t tfmcp .
### Run the container
docker run -it tfmcp
Requirements
- Rust (edition 2021)
- Terraform CLI installed and available in PATH
- Claude Desktop (for AI assistant integration)
- Docker (optional, for containerized deployment)
Usage
$ tfmcp --help
✨ A CLI tool to manage Terraform configurations and operate Terraform through the Model Context Protocol (MCP).
Usage: tfmcp [OPTIONS] [COMMAND]
Commands:
mcp Launch tfmcp as an MCP server
analyze Analyze Terraform configurations
help Print this message or the help of the given subcommand(s)
Options:
-c, --config <PATH> Path to the configuration file
-d, --dir <PATH> Terraform project directory
-V, --version Print version
-h, --help Print help
Using Docker
When using Docker, you can run tfmcp commands like this:
### Run as MCP server (default)
docker run -it tfmcp
### Run with specific command and options
docker run -it tfmcp analyze --dir /app/example
### Mount your Terraform project directory
docker run -it -v /path/to/your/terraform:/app/terraform tfmcp --dir /app/terraform
### Set environment variables
docker run -it -e TFMCP_LOG_LEVEL=debug tfmcp
Integrating with Claude Desktop
To use tfmcp with Claude Desktop:
-
If you haven't already, install tfmcp:
cargo install tfmcp
Alternatively, you can use Docker:
docker build -t tfmcp .
-
Find the path to your installed tfmcp executable:
which tfmcp
-
Add the following configuration to
~/Library/Application\ Support/Claude/claude_desktop_config.json
:
{
"mcpServers": {
"tfmcp": {
"command": "/path/to/your/tfmcp", // Replace with the actual path from step 2
"args": ["mcp"],
"env": {
"HOME": "/Users/yourusername", // Replace with your username
"PATH": "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin",
"TERRAFORM_DIR": "/path/to/your/terraform/project" // Optional: specify your Terraform project
}
}
}
}
If you're using Docker with Claude Desktop, you can set up the configuration like this:
{
"mcpServers": {
"tfmcp": {
"command": "docker",
"args": ["run", "--rm", "-v", "/path/to/your/terraform:/app/terraform", "tfmcp", "mcp"],
"env": {
"TERRAFORM_DIR": "/app/terraform"
}
}
}
}
-
Restart Claude Desktop and enable the tfmcp tool.
-
tfmcp will automatically create a sample Terraform project in
~/terraform
if one doesn't exist, ensuring Claude can start working with Terraform right away. The sample project is based on the examples included in theexample/demo
directory of this repository.
Logs and Troubleshooting
The tfmcp server logs are available at:
~/Library/Logs/Claude/mcp-server-tfmcp.log
Common issues and solutions:
- Claude can't connect to the server: Make sure the path to the tfmcp executable is correct in your configuration
- Terraform project issues: tfmcp automatically creates a sample Terraform project if none is found
- Method not found errors: MCP protocol support includes resources/list and prompts/list methods
- Docker issues: If using Docker, ensure your container has proper volume mounts and permissions
Environment Variables
Core Configuration
TERRAFORM_DIR
: Set this to specify a custom Terraform project directory. If not set, tfmcp will use the directory provided by command line arguments, configuration files, or fall back to~/terraform
. You can also change the project directory at runtime using theset_terraform_directory
tool.TFMCP_LOG_LEVEL
: Set todebug
,info
,warn
, orerror
to control logging verbosity.TFMCP_DEMO_MODE
: Set totrue
to enable demo mode with additional safety features.
Security Configuration
TFMCP_ALLOW_DANGEROUS_OPS
: Set totrue
to enable apply/destroy operations (default:false
)TFMCP_ALLOW_AUTO_APPROVE
: Set totrue
to enable auto-approve for dangerous operations (default:false
)TFMCP_MAX_RESOURCES
: Set maximum number of resources that can be managed (default: 50)TFMCP_AUDIT_ENABLED
: Set tofalse
to disable audit logging (default:true
)TFMCP_AUDIT_LOG_FILE
: Custom path for audit log file (default:~/.tfmcp/audit.log
)TFMCP_AUDIT_LOG_SENSITIVE
: Set totrue
to include sensitive information in audit logs (default:false
)
Security Considerations
tfmcp includes comprehensive security features designed for production use:
🔒 Built-in Security Features
- Access Controls: Automatic blocking of production/sensitive file patterns
- Operation Restrictions: Dangerous operations (apply/destroy) disabled by default
- Resource Limits: Configurable maximum resource count protection
- Audit Logging: Complete operation tracking with timestamps and user identification
- Directory Validation: Security policy enforcement for project directories
🛡️ Security Best Practices
- Default Safety: Apply/destroy operations are disabled by default - explicitly enable only when needed
- Review Plans: Always review Terraform plans before applying, especially AI-generated ones
- IAM Boundaries: Use appropriate IAM permissions and role boundaries in cloud environments
- Audit Monitoring: Regularly review audit logs at
~/.tfmcp/audit.log
- File Patterns: Built-in protection against accessing
prod*
,production*
, andsecret*
patterns - Docker Security: When using containers, carefully consider volume mounts and exposed data
⚙️ Production Configuration
### Recommended production settings
export TFMCP_ALLOW_DANGEROUS_OPS=false # Keep disabled for safety
export TFMCP_ALLOW_AUTO_APPROVE=false # Require manual approval
export TFMCP_MAX_RESOURCES=10 # Limit resource scope
export TFMCP_AUDIT_ENABLED=true # Enable audit logging
export TFMCP_AUDIT_LOG_SENSITIVE=false # Don't log sensitive data
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
Roadmap
Here are some planned improvements and future features for tfmcp:
Completed
-
Basic Terraform Integration
Core integration with Terraform CLI for analyzing and executing operations. -
MCP Server Implementation
Initial implementation of the Model Context Protocol server for AI assistants. -
Automatic Project Creation
Added functionality to automatically create sample Terraform projects when needed. -
Claude Desktop Integration
Support for seamless integration with Claude Desktop. -
Core MCP Methods
Implementation of essential MCP methods including resources/list and prompts/list. -
Error Handling Improvements
Better error handling and recovery mechanisms for robust operation. -
Dynamic Project Directory Switching
Added ability to change the active Terraform project directory without restarting the service. -
Crates.io Publication
Published the package to Crates.io for easy installation via Cargo. -
Docker Support
Added containerization support for easier deployment and cross-platform compatibility. -
Security Enhancements
Comprehensive security system with configurable policies, audit logging, access controls, and production-ready safety features.
In Progress
-
Enhanced Terraform Analysis
Implement deeper parsing and analysis of Terraform configurations, plans, and state files. -
Comprehensive Testing Framework
Expand test coverage including integration tests with real Terraform configurations.
Planned
-
Multi-Environment Support
Add support for managing multiple Terraform environments, workspaces, and modules. -
Expanded MCP Protocol Support
Implement additional MCP methods and capabilities for richer integration with AI assistants. -
Performance Optimization
Optimize resource usage and response times for large Terraform projects. -
Cost Estimation
Integrate with cloud provider pricing APIs to provide cost estimates for Terraform plans. -
Interactive TUI
Develop a terminal-based user interface for easier local usage and debugging. -
Integration with Other AI Platforms
Extend beyond Claude to support other AI assistants and platforms. -
Plugin System
Develop a plugin architecture to allow extensions of core functionality.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Configuración del Servidor
{
"mcpServers": {
"tfmcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--nwiizo--tfmcp--tfmcp",
"./bin/tfmcp --dir terraform-dir --path path"
],
"env": {
"TERRAFORM_DIR": "terraform-dir",
"TFMCP_LOG_LEVEL": "tfmcp-log-level",
"TFMCP_DEMO_MODE": "tfmcp-demo-mode"
}
}
}
}