Mcp 服务器 Qdrant:一个 Qdrant Mcp 服务器
概览
什么是 MCP 服务器 Qdrant?
MCP 服务器 Qdrant 是由 Qdrant 开发的模型上下文协议(MCP)服务器的官方实现。它作为一个强大的工具,用于管理和部署机器学习模型,能够实现无缝集成和高效处理模型上下文。该服务器旨在促进 AI 模型在各种应用中的部署,确保它们能够被有效访问和利用。
MCP 服务器 Qdrant 的特点
- 模型上下文管理:MCP 服务器允许高效管理模型上下文,使用户能够轻松切换不同的模型和配置。
- 可扩展性:该服务器旨在处理大规模部署,能够同时管理多个模型而不影响性能。
- 用户友好的界面:服务器提供了一个简单明了的界面,供用户与其模型进行交互,即使是技术知识有限的用户也能轻松使用。
- 开源:MCP 服务器 Qdrant 是开源的,允许开发者为其改进做出贡献,并根据特定需求进行定制。
- 完善的文档:提供全面的文档,向用户提供所需的所有信息,以便开始使用并充分利用服务器的功能。
如何使用 MCP 服务器 Qdrant
- 安装:首先从官方 Qdrant 网站 下载 MCP 服务器 Qdrant。按照文档中提供的安装说明进行操作。
- 配置:安装后,根据您的要求配置服务器设置。这包括设置模型路径、上下文参数和任何必要的环境变量。
- 部署模型:将您的机器学习模型上传到服务器。确保它们与 MCP 规范兼容,以获得最佳性能。
- 访问模型:使用提供的 API 端点访问和管理您的模型。您可以检索模型上下文、进行预测,并根据需要在不同模型之间切换。
- 监控性能:利用内置的监控工具跟踪模型的性能,并根据需要进行调整。
常见问题解答
MCP 服务器 Qdrant 的目的是什么?
MCP 服务器 Qdrant 旨在高效管理和部署机器学习模型,提供一个强大的框架来处理模型上下文,并确保无缝集成到应用中。
MCP 服务器 Qdrant 是免费使用的吗?
是的,MCP 服务器 Qdrant 是开源的,免费使用。您可以从官方 Qdrant 网站下载并为其开发做出贡献。
我可以自定义 MCP 服务器 Qdrant 吗?
当然可以!作为开源项目,您可以修改服务器的代码以满足您的特定需求,并为其持续开发做出贡献。
MCP 服务器 Qdrant 可以部署哪些类型的模型?
该服务器旨在支持广泛的机器学习模型,只要它们遵循模型上下文协议的规范。
我在哪里可以找到 MCP 服务器 Qdrant 的文档?
全面的文档可在 Qdrant 网站 上找到,其中包括安装指南、配置说明和使用示例。
详情
mcp-server-qdrant: A Qdrant MCP server
The Model Context Protocol (MCP) is an open protocol that enables seamless integration between LLM applications and external data sources and tools. Whether you're building an AI-powered IDE, enhancing a chat interface, or creating custom AI workflows, MCP provides a standardized way to connect LLMs with the context they need.
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Overview
An official Model Context Protocol server for keeping and retrieving memories in the Qdrant vector search engine. It acts as a semantic memory layer on top of the Qdrant database.
Components
Tools
qdrant-store
- Store some information in the Qdrant database
- Input:
information
(string): Information to storemetadata
(JSON): Optional metadata to storecollection_name
(string): Name of the collection to store the information in. This field is required if there are no default collection name. If there is a default collection name, this field is not enabled.
- Returns: Confirmation message
qdrant-find
- Retrieve relevant information from the Qdrant database
- Input:
query
(string): Query to use for searchingcollection_name
(string): Name of the collection to store the information in. This field is required if there are no default collection name. If there is a default collection name, this field is not enabled.
- Returns: Information stored in the Qdrant database as separate messages
Environment Variables
The configuration of the server is done using environment variables:
| Name | Description | Default Value |
|--||-|
| QDRANT_URL
| URL of the Qdrant server | None |
| QDRANT_API_KEY
| API key for the Qdrant server | None |
| COLLECTION_NAME
| Name of the default collection to use. | None |
| QDRANT_LOCAL_PATH
| Path to the local Qdrant database (alternative to QDRANT_URL
) | None |
| EMBEDDING_PROVIDER
| Embedding provider to use (currently only "fastembed" is supported) | fastembed
|
| EMBEDDING_MODEL
| Name of the embedding model to use | sentence-transformers/all-MiniLM-L6-v2
|
| TOOL_STORE_DESCRIPTION
| Custom description for the store tool | See default in settings.py
|
| TOOL_FIND_DESCRIPTION
| Custom description for the find tool | See default in settings.py
|
Note: You cannot provide both QDRANT_URL
and QDRANT_LOCAL_PATH
at the same time.
[!IMPORTANT] Command-line arguments are not supported anymore! Please use environment variables for all configuration.
FastMCP Environment Variables
Since mcp-server-qdrant
is based on FastMCP, it also supports all the FastMCP environment variables. The most
important ones are listed below:
| Environment Variable | Description | Default Value |
||--||
| FASTMCP_DEBUG
| Enable debug mode | false
|
| FASTMCP_LOG_LEVEL
| Set logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL) | INFO
|
| FASTMCP_HOST
| Host address to bind the server to | 127.0.0.1
|
| FASTMCP_PORT
| Port to run the server on | 8000
|
| FASTMCP_WARN_ON_DUPLICATE_RESOURCES
| Show warnings for duplicate resources | true
|
| FASTMCP_WARN_ON_DUPLICATE_TOOLS
| Show warnings for duplicate tools | true
|
| FASTMCP_WARN_ON_DUPLICATE_PROMPTS
| Show warnings for duplicate prompts | true
|
| FASTMCP_DEPENDENCIES
| List of dependencies to install in the server environment | []
|
Installation
Using uvx
When using uvx
no specific installation is needed to directly run mcp-server-qdrant.
QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="my-collection" \
EMBEDDING_MODEL="sentence-transformers/all-MiniLM-L6-v2" \
uvx mcp-server-qdrant
Transport Protocols
The server supports different transport protocols that can be specified using the --transport
flag:
QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="my-collection" \
uvx mcp-server-qdrant --transport sse
Supported transport protocols:
stdio
(default): Standard input/output transport, might only be used by local MCP clientssse
: Server-Sent Events transport, perfect for remote clientsstreamable-http
: Streamable HTTP transport, perfect for remote clients, more recent than SSE
The default transport is stdio
if not specified.
When SSE transport is used, the server will listen on the specified port and wait for incoming connections. The default
port is 8000, however it can be changed using the FASTMCP_PORT
environment variable.
QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="my-collection" \
FASTMCP_PORT=1234 \
uvx mcp-server-qdrant --transport sse
Using Docker
A Dockerfile is available for building and running the MCP server:
### Build the container
docker build -t mcp-server-qdrant .
### Run the container
docker run -p 8000:8000 \
-e FASTMCP_HOST="0.0.0.0" \
-e QDRANT_URL="http://your-qdrant-server:6333" \
-e QDRANT_API_KEY="your-api-key" \
-e COLLECTION_NAME="your-collection" \
mcp-server-qdrant
[!TIP] Please note that we set
FASTMCP_HOST="0.0.0.0"
to make the server listen on all network interfaces. This is necessary when running the server in a Docker container.
Installing via Smithery
To install Qdrant MCP Server for Claude Desktop automatically via Smithery:
npx @smithery/cli install mcp-server-qdrant --client claude
Manual configuration of Claude Desktop
To use this server with the Claude Desktop app, add the following configuration to the "mcpServers" section of your
claude_desktop_config.json
:
{
"qdrant": {
"command": "uvx",
"args": ["mcp-server-qdrant"],
"env": {
"QDRANT_URL": "https://xyz-example.eu-central.aws.cloud.qdrant.io:6333",
"QDRANT_API_KEY": "your_api_key",
"COLLECTION_NAME": "your-collection-name",
"EMBEDDING_MODEL": "sentence-transformers/all-MiniLM-L6-v2"
}
}
}
For local Qdrant mode:
{
"qdrant": {
"command": "uvx",
"args": ["mcp-server-qdrant"],
"env": {
"QDRANT_LOCAL_PATH": "/path/to/qdrant/database",
"COLLECTION_NAME": "your-collection-name",
"EMBEDDING_MODEL": "sentence-transformers/all-MiniLM-L6-v2"
}
}
}
This MCP server will automatically create a collection with the specified name if it doesn't exist.
By default, the server will use the sentence-transformers/all-MiniLM-L6-v2
embedding model to encode memories.
For the time being, only FastEmbed models are supported.
Support for other tools
This MCP server can be used with any MCP-compatible client. For example, you can use it with Cursor and VS Code, which provide built-in support for the Model Context Protocol.
Using with Cursor/Windsurf
You can configure this MCP server to work as a code search tool for Cursor or Windsurf by customizing the tool descriptions:
QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="code-snippets" \
TOOL_STORE_DESCRIPTION="Store reusable code snippets for later retrieval. \
The 'information' parameter should contain a natural language description of what the code does, \
while the actual code should be included in the 'metadata' parameter as a 'code' property. \
The value of 'metadata' is a Python dictionary with strings as keys. \
Use this whenever you generate some code snippet." \
TOOL_FIND_DESCRIPTION="Search for relevant code snippets based on natural language descriptions. \
The 'query' parameter should describe what you're looking for, \
and the tool will return the most relevant code snippets. \
Use this when you need to find existing code snippets for reuse or reference." \
uvx mcp-server-qdrant --transport sse # Enable SSE transport
In Cursor/Windsurf, you can then configure the MCP server in your settings by pointing to this running server using SSE transport protocol. The description on how to add an MCP server to Cursor can be found in the Cursor documentation. If you are running Cursor/Windsurf locally, you can use the following URL:
http://localhost:8000/sse
[!TIP] We suggest SSE transport as a preferred way to connect Cursor/Windsurf to the MCP server, as it can support remote connections. That makes it easy to share the server with your team or use it in a cloud environment.
This configuration transforms the Qdrant MCP server into a specialized code search tool that can:
- Store code snippets, documentation, and implementation details
- Retrieve relevant code examples based on semantic search
- Help developers find specific implementations or usage patterns
You can populate the database by storing natural language descriptions of code snippets (in the information
parameter)
along with the actual code (in the metadata.code
property), and then search for them using natural language queries
that describe what you're looking for.
[!NOTE] The tool descriptions provided above are examples and may need to be customized for your specific use case. Consider adjusting the descriptions to better match your team's workflow and the specific types of code snippets you want to store and retrieve.
If you have successfully installed the mcp-server-qdrant
, but still can't get it to work with Cursor, please
consider creating the Cursor rules so the MCP tools are always used when
the agent produces a new code snippet. You can restrict the rules to only work for certain file types, to avoid using
the MCP server for the documentation or other types of content.
Using with Claude Code
You can enhance Claude Code's capabilities by connecting it to this MCP server, enabling semantic search over your existing codebase.
Setting up mcp-server-qdrant
-
Add the MCP server to Claude Code:
# Add mcp-server-qdrant configured for code search claude mcp add code-search \ -e QDRANT_URL="http://localhost:6333" \ -e COLLECTION_NAME="code-repository" \ -e EMBEDDING_MODEL="sentence-transformers/all-MiniLM-L6-v2" \ -e TOOL_STORE_DESCRIPTION="Store code snippets with descriptions. The 'information' parameter should contain a natural language description of what the code does, while the actual code should be included in the 'metadata' parameter as a 'code' property." \ -e TOOL_FIND_DESCRIPTION="Search for relevant code snippets using natural language. The 'query' parameter should describe the functionality you're looking for." \ -- uvx mcp-server-qdrant
-
Verify the server was added:
claude mcp list
Using Semantic Code Search in Claude Code
Tool descriptions, specified in TOOL_STORE_DESCRIPTION
and TOOL_FIND_DESCRIPTION
, guide Claude Code on how to use
the MCP server. The ones provided above are examples and may need to be customized for your specific use case. However,
Claude Code should be already able to:
- Use the
qdrant-store
tool to store code snippets with descriptions. - Use the
qdrant-find
tool to search for relevant code snippets using natural language.
Run MCP server in Development Mode
The MCP server can be run in development mode using the mcp dev
command. This will start the server and open the MCP
inspector in your browser.
COLLECTION_NAME=mcp-dev fastmcp dev src/mcp_server_qdrant/server.py
Using with VS Code
For one-click installation, click one of the install buttons below:
Manual Installation
Add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P
and typing Preferences: Open User Settings (JSON)
.
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "qdrantUrl",
"description": "Qdrant URL"
},
{
"type": "promptString",
"id": "qdrantApiKey",
"description": "Qdrant API Key",
"password": true
},
{
"type": "promptString",
"id": "collectionName",
"description": "Collection Name"
}
],
"servers": {
"qdrant": {
"command": "uvx",
"args": ["mcp-server-qdrant"],
"env": {
"QDRANT_URL": "${input:qdrantUrl}",
"QDRANT_API_KEY": "${input:qdrantApiKey}",
"COLLECTION_NAME": "${input:collectionName}"
}
}
}
}
}
Or if you prefer using Docker, add this configuration instead:
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "qdrantUrl",
"description": "Qdrant URL"
},
{
"type": "promptString",
"id": "qdrantApiKey",
"description": "Qdrant API Key",
"password": true
},
{
"type": "promptString",
"id": "collectionName",
"description": "Collection Name"
}
],
"servers": {
"qdrant": {
"command": "docker",
"args": [
"run",
"-p", "8000:8000",
"-i",
"--rm",
"-e", "QDRANT_URL",
"-e", "QDRANT_API_KEY",
"-e", "COLLECTION_NAME",
"mcp-server-qdrant"
],
"env": {
"QDRANT_URL": "${input:qdrantUrl}",
"QDRANT_API_KEY": "${input:qdrantApiKey}",
"COLLECTION_NAME": "${input:collectionName}"
}
}
}
}
}
Alternatively, you can create a .vscode/mcp.json
file in your workspace with the following content:
{
"inputs": [
{
"type": "promptString",
"id": "qdrantUrl",
"description": "Qdrant URL"
},
{
"type": "promptString",
"id": "qdrantApiKey",
"description": "Qdrant API Key",
"password": true
},
{
"type": "promptString",
"id": "collectionName",
"description": "Collection Name"
}
],
"servers": {
"qdrant": {
"command": "uvx",
"args": ["mcp-server-qdrant"],
"env": {
"QDRANT_URL": "${input:qdrantUrl}",
"QDRANT_API_KEY": "${input:qdrantApiKey}",
"COLLECTION_NAME": "${input:collectionName}"
}
}
}
}
For workspace configuration with Docker, use this in .vscode/mcp.json
:
{
"inputs": [
{
"type": "promptString",
"id": "qdrantUrl",
"description": "Qdrant URL"
},
{
"type": "promptString",
"id": "qdrantApiKey",
"description": "Qdrant API Key",
"password": true
},
{
"type": "promptString",
"id": "collectionName",
"description": "Collection Name"
}
],
"servers": {
"qdrant": {
"command": "docker",
"args": [
"run",
"-p", "8000:8000",
"-i",
"--rm",
"-e", "QDRANT_URL",
"-e", "QDRANT_API_KEY",
"-e", "COLLECTION_NAME",
"mcp-server-qdrant"
],
"env": {
"QDRANT_URL": "${input:qdrantUrl}",
"QDRANT_API_KEY": "${input:qdrantApiKey}",
"COLLECTION_NAME": "${input:collectionName}"
}
}
}
}
Contributing
If you have suggestions for how mcp-server-qdrant could be improved, or want to report a bug, open an issue! We'd love all and any contributions.
Testing mcp-server-qdrant
locally
The MCP inspector is a developer tool for testing and debugging MCP servers. It runs both a client UI (default port 5173) and an MCP proxy server (default port 3000). Open the client UI in your browser to use the inspector.
QDRANT_URL=":memory:" COLLECTION_NAME="test" \
fastmcp dev src/mcp_server_qdrant/server.py
Once started, open your browser to http://localhost:5173 to access the inspector interface.
License
This MCP server is licensed under the Apache License 2.0. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the Apache License 2.0. For more details, please see the LICENSE file in the project repository.
Server配置
{
"mcpServers": {
"mcp-server-qdrant": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--qdrant--mcp-server-qdrant--mcp-server-qdrant",
"mcp-server-qdrant"
],
"env": {
"QDRANT_URL": "qdrant-url",
"QDRANT_API_KEY": "qdrant-api-key",
"COLLECTION_NAME": "collection-name",
"QDRANT_LOCAL_PATH": "qdrant-local-path",
"EMBEDDING_PROVIDER": "embedding-provider",
"EMBEDDING_MODEL": "embedding-model",
"TOOL_STORE_DESCRIPTION": "tool-store-description"
}
}
}
}