mcp audiense insights
Audiense Insights MCP 服务器是一个基于模型上下文协议(MCP)的服务器,允许 Claude 和其他兼容 MCP 的客户端与您的 Audiense Insights 账户进行交互。
概览
什么是 Audiense Insights MCP 服务器?
Audiense Insights MCP 服务器是一个强大的服务器,基于模型上下文协议(MCP)设计。它使 Claude 与其他兼容 MCP 的客户端与您的 Audiense Insights 账户之间实现无缝互动。此集成使用户能够充分利用 Audiense 的数据分析能力,增强他们的营销策略和受众参与度。
Audiense Insights MCP 服务器的特点
- MCP 兼容性:该服务器旨在与任何兼容 MCP 的客户端一起工作,确保灵活性和广泛的可用性。
- 数据集成:它允许集成各种数据源,从而提供全面的受众洞察。
- 用户友好的界面:该服务器提供直观的界面,简化用户的互动过程。
- 实时分析:用户可以访问实时数据分析,帮助他们快速做出明智的决策。
- 可扩展性:该服务器设计为随着您的需求增长,可以处理不断增加的数据和用户,而不影响性能。
如何使用 Audiense Insights MCP 服务器
- 设置您的账户:首先在 Audiense 平台上创建一个账户。
- 连接您的兼容 MCP 的客户端:将您首选的兼容 MCP 的客户端链接到 Audiense Insights MCP 服务器。
- 配置数据源:整合您的数据源以开始收集洞察。
- 分析数据:利用服务器的分析工具来解读数据并生成报告。
- 实施洞察:利用获得的洞察来优化您的营销策略并增强受众参与度。
常见问题解答
问题1:什么是模型上下文协议(MCP)?
回答1:模型上下文协议(MCP)是一种通信协议,允许不同系统之间无缝互动和共享数据。
问题2:我可以与任何客户端一起使用 Audiense Insights MCP 服务器吗?
回答2:是的,只要客户端是兼容 MCP 的,您就可以将其与 Audiense Insights MCP 服务器集成。
问题3:使用 Audiense Insights MCP 服务器是否需要费用?
回答3:Audiense 提供多种定价计划。最好查看他们的官方网站以获取最新的定价信息。
问题4:我如何获得 Audiense Insights MCP 服务器的支持?
回答4:可以通过 Audiense 网站访问支持,您可以找到文档、常见问题解答和客户服务的联系方式。
问题5:我的数据在 Audiense Insights MCP 服务器上安全吗?
回答5:是的,Audiense 非常重视数据安全,并实施各种措施来保护用户数据。
欲了解更多信息,请访问 Audiense 官方网站。
详情
⚠️ Deprecated
🚫 This repository is no longer maintained.
The Audiense Insights MCP has been migrated to a remote model. For more information on how to use the new remote MCP, please reach us at support@audiense.com.
🏆 Audiense Insights MCP Server
This server, based on the Model Context Protocol (MCP), allows Claude or any other MCP-compatible client to interact with your Audiense Insights account. It extracts marketing insights and audience analysis from Audiense reports, covering demographic, cultural, influencer, and content engagement analysis.
🚀 Prerequisites
Before using this server, ensure you have:
- Node.js (v18 or higher)
- Claude Desktop App
- Audiense Insights Account with API credentials
- X/Twitter API Bearer Token (optional, for enriched influencer data)
⚙️ Configuring Claude Desktop
-
Open the configuration file for Claude Desktop:
- MacOS:
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
- Windows:
code %AppData%\Claude\claude_desktop_config.json
- MacOS:
-
Add or update the following configuration:
"mcpServers": { "audiense-insights": { "command": "npx", "args": [ "-y", "mcp-audiense-insights" ], "env": { "AUDIENSE_CLIENT_ID": "your_client_id_here", "AUDIENSE_CLIENT_SECRET": "your_client_secret_here", "TWITTER_BEARER_TOKEN": "your_token_here" } } }
-
Save the file and restart Claude Desktop.
🛠️ Available Tools
📌 get-reports
Description: Retrieves the list of Audiense insights reports owned by the authenticated user.
- Parameters: None
- Response:
- List of reports in JSON format.
📌 get-report-info
Description: Fetches detailed information about a specific intelligence report, including:
-
Status
-
Segmentation type
-
Audience size
-
Segments
-
Access links
-
Parameters:
report_id
(string): The ID of the intelligence report.
-
Response:
- Full report details in JSON format.
- If the report is still processing, returns a message indicating the pending status.
📌 get-audience-insights
Description: Retrieves aggregated insights for a given audience, including:
-
Demographics: Gender, age, country.
-
Behavioral traits: Active hours, platform usage.
-
Psychographics: Personality traits, interests.
-
Socioeconomic factors: Income, education status.
-
Parameters:
audience_insights_id
(string): The ID of the audience insights.insights
(array of strings, optional): List of specific insight names to filter.
-
Response:
- Insights formatted as a structured text list.
📌 get-baselines
Description: Retrieves available baseline audiences, optionally filtered by country.
-
Parameters:
country
(string, optional): ISO country code to filter by.
-
Response:
- List of baseline audiences in JSON format.
📌 get-categories
Description: Retrieves the list of available affinity categories that can be used in influencer comparisons.
- Parameters: None
- Response:
- List of categories in JSON format.
📌 compare-audience-influencers
Description: Compares influencers of a given audience with a baseline audience. The baseline is determined as follows:
- If a single country represents more than 50% of the audience, that country is used as the baseline.
- Otherwise, the global baseline is used.
- If a specific segment is selected, the full audience is used as the baseline.
Each influencer comparison includes:
-
Affinity (%) – How well the influencer aligns with the audience.
-
Baseline Affinity (%) – The influencer’s affinity within the baseline audience.
-
Uniqueness Score – How distinct the influencer is compared to the baseline.
-
Parameters:
audience_influencers_id
(string): ID of the audience influencers.baseline_audience_influencers_id
(string): ID of the baseline audience influencers.cursor
(number, optional): Pagination cursor.count
(number, optional): Number of items per page (default: 200).bio_keyword
(string, optional): Filter influencers by bio keyword.entity_type
(enum:person
|brand
, optional): Filter by entity type.followers_min
(number, optional): Minimum number of followers.followers_max
(number, optional): Maximum number of followers.categories
(array of strings, optional): Filter influencers by categories.countries
(array of strings, optional): Filter influencers by country ISO codes.
-
Response:
- List of influencers with affinity scores, baseline comparison, and uniqueness scores in JSON format.
📌 get-audience-content
Description: Retrieves audience content engagement details, including:
- Liked Content: Most popular posts, domains, emojis, hashtags, links, media, and a word cloud.
- Shared Content: Most shared content categorized similarly.
- Influential Content: Content from influential accounts.
Each category contains:
-
popularPost
: Most engaged posts. -
topDomains
: Most mentioned domains. -
topEmojis
: Most used emojis. -
topHashtags
: Most used hashtags. -
topLinks
: Most shared links. -
topMedia
: Shared media. -
wordcloud
: Most frequently used words. -
Parameters:
audience_content_id
(string): The ID of the audience content.
-
Response:
- Content engagement data in JSON format.
📌 report-summary
Description: Generates a comprehensive summary of an Audiense report, including:
-
Report metadata (title, segmentation type)
-
Full audience size
-
Detailed segment information
-
Top insights for each segment (bio keywords, demographics, interests)
-
Top influencers for each segment with comparison metrics
-
Parameters:
report_id
(string): The ID of the intelligence report to summarize.
-
Response:
- Complete report summary in JSON format with structured data for each segment
- For pending reports: Status message indicating the report is still processing
- For reports without segments: Message indicating there are no segments to analyze
💡 Predefined Prompts
This server includes a preconfigured prompts
audiense-demo
: Helps analyze Audiense reports interactively.segment-matching
: A prompt to match and compare audience segments across Audiense reports, identifying similarities, unique traits, and key insights based on demographics, interests, influencers, and engagement patterns.
Usage:
- Accepts a reportName argument to find the most relevant report.
- If an ID is provided, it searches by report ID instead.
Use case: Structured guidance for audience analysis.
🛠️ Troubleshooting
Tools Not Appearing in Claude
- Check Claude Desktop logs:
tail -f ~/Library/Logs/Claude/mcp*.log
- Verify environment variables are set correctly.
- Ensure the absolute path to index.js is correct.
Authentication Issues
- Double-check OAuth credentials.
- Ensure the refresh token is still valid.
- Verify that the required API scopes are enabled.
📜 Viewing Logs
To check server logs:
For MacOS/Linux:
tail -n 20 -f ~/Library/Logs/Claude/mcp*.log
For Windows:
Get-Content -Path "$env:AppData\Claude\Logs\mcp*.log" -Wait -Tail 20
🔐 Security Considerations
- Keep API credentials secure – never expose them in public repositories.
- Use environment variables to manage sensitive data.
📄 License
This project is licensed under the Apache 2.0 License. See the LICENSE file for more details.
Server配置
{
"mcpServers": {
"mcp-audiense-insights": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--audienseco--mcp-audiense-insights--mcp-audiense-insights",
"node ./build/index.js"
],
"env": {
"AUDIENSE_CLIENT_ID": "audiense-client-id",
"AUDIENSE_CLIENT_SECRET": "audiense-client-secret",
"TWITTER_BEARER_TOKEN": "twitter-bearer-token"
}
}
}
}