mcp audiense insights
Audiense Insights MCP 伺服器是一個基於模型上下文協議(MCP)的伺服器,允許 Claude 和其他兼容 MCP 的客戶端與您的 Audiense Insights 帳戶互動。
概覽
Audiense Insights MCP 伺服器是什麼?
Audiense Insights MCP 伺服器是一個強大的伺服器,基於模型上下文協議(MCP)設計。它使 Claude 與其他兼容 MCP 的客戶端之間能夠無縫互動,並與您的 Audiense Insights 帳戶連接。這種整合使得用戶能夠充分利用 Audiense 的數據分析能力,提升其行銷策略和受眾參與度。
Audiense Insights MCP 伺服器的特點
- MCP 兼容性:該伺服器旨在與任何兼容 MCP 的客戶端一起使用,確保靈活性和廣泛的可用性。
- 數據整合:它允許整合各種數據來源,提供全面的受眾洞察。
- 用戶友好的介面:伺服器提供直觀的介面,簡化用戶的互動過程。
- 實時分析:用戶可以訪問實時數據分析,幫助他們快速做出明智的決策。
- 可擴展性:該伺服器設計為隨著您的需求增長而增長,能夠處理不斷增加的數據和用戶,而不影響性能。
如何使用 Audiense Insights MCP 伺服器
- 設置您的帳戶:首先在 Audiense 平台上創建一個帳戶。
- 連接您的兼容 MCP 的客戶端:將您首選的兼容 MCP 的客戶端連接到 Audiense Insights MCP 伺服器。
- 配置數據來源:整合您的數據來源以開始收集洞察。
- 分析數據:利用伺服器的分析工具來解釋數據並生成報告。
- 實施洞察:利用獲得的洞察來完善您的行銷策略並增強受眾參與度。
常見問題解答
Q1: 什麼是模型上下文協議(MCP)?
A1: 模型上下文協議(MCP)是一種通信協議,允許不同系統之間無縫互動和共享數據。
Q2: 我可以使用任何客戶端與 Audiense Insights MCP 伺服器嗎?
A2: 是的,只要該客戶端是兼容 MCP 的,您就可以將其與 Audiense Insights MCP 伺服器整合。
Q3: 使用 Audiense Insights MCP 伺服器是否需要付費?
A3: Audiense 提供多種定價計劃。最好查看他們的官方網站以獲取最新的定價信息。
Q4: 我該如何獲得 Audiense Insights MCP 伺服器的支持?
A4: 支持可以通過 Audiense 網站獲得,您可以在那裡找到文檔、常見問題解答和客戶服務的聯繫選項。
Q5: 我的數據在 Audiense Insights MCP 伺服器上是否安全?
A5: 是的,Audiense 非常重視數據安全,並實施各種措施來保護用戶數據。
欲了解更多信息,請訪問 Audiense 的官方網站。
詳細
⚠️ Deprecated
🚫 This repository is no longer maintained.
The Audiense Insights MCP has been migrated to a remote model. For more information on how to use the new remote MCP, please reach us at support@audiense.com.
🏆 Audiense Insights MCP Server
This server, based on the Model Context Protocol (MCP), allows Claude or any other MCP-compatible client to interact with your Audiense Insights account. It extracts marketing insights and audience analysis from Audiense reports, covering demographic, cultural, influencer, and content engagement analysis.
🚀 Prerequisites
Before using this server, ensure you have:
- Node.js (v18 or higher)
- Claude Desktop App
- Audiense Insights Account with API credentials
- X/Twitter API Bearer Token (optional, for enriched influencer data)
⚙️ Configuring Claude Desktop
-
Open the configuration file for Claude Desktop:
- MacOS:
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
- Windows:
code %AppData%\Claude\claude_desktop_config.json
- MacOS:
-
Add or update the following configuration:
"mcpServers": { "audiense-insights": { "command": "npx", "args": [ "-y", "mcp-audiense-insights" ], "env": { "AUDIENSE_CLIENT_ID": "your_client_id_here", "AUDIENSE_CLIENT_SECRET": "your_client_secret_here", "TWITTER_BEARER_TOKEN": "your_token_here" } } }
-
Save the file and restart Claude Desktop.
🛠️ Available Tools
📌 get-reports
Description: Retrieves the list of Audiense insights reports owned by the authenticated user.
- Parameters: None
- Response:
- List of reports in JSON format.
📌 get-report-info
Description: Fetches detailed information about a specific intelligence report, including:
-
Status
-
Segmentation type
-
Audience size
-
Segments
-
Access links
-
Parameters:
report_id
(string): The ID of the intelligence report.
-
Response:
- Full report details in JSON format.
- If the report is still processing, returns a message indicating the pending status.
📌 get-audience-insights
Description: Retrieves aggregated insights for a given audience, including:
-
Demographics: Gender, age, country.
-
Behavioral traits: Active hours, platform usage.
-
Psychographics: Personality traits, interests.
-
Socioeconomic factors: Income, education status.
-
Parameters:
audience_insights_id
(string): The ID of the audience insights.insights
(array of strings, optional): List of specific insight names to filter.
-
Response:
- Insights formatted as a structured text list.
📌 get-baselines
Description: Retrieves available baseline audiences, optionally filtered by country.
-
Parameters:
country
(string, optional): ISO country code to filter by.
-
Response:
- List of baseline audiences in JSON format.
📌 get-categories
Description: Retrieves the list of available affinity categories that can be used in influencer comparisons.
- Parameters: None
- Response:
- List of categories in JSON format.
📌 compare-audience-influencers
Description: Compares influencers of a given audience with a baseline audience. The baseline is determined as follows:
- If a single country represents more than 50% of the audience, that country is used as the baseline.
- Otherwise, the global baseline is used.
- If a specific segment is selected, the full audience is used as the baseline.
Each influencer comparison includes:
-
Affinity (%) – How well the influencer aligns with the audience.
-
Baseline Affinity (%) – The influencer’s affinity within the baseline audience.
-
Uniqueness Score – How distinct the influencer is compared to the baseline.
-
Parameters:
audience_influencers_id
(string): ID of the audience influencers.baseline_audience_influencers_id
(string): ID of the baseline audience influencers.cursor
(number, optional): Pagination cursor.count
(number, optional): Number of items per page (default: 200).bio_keyword
(string, optional): Filter influencers by bio keyword.entity_type
(enum:person
|brand
, optional): Filter by entity type.followers_min
(number, optional): Minimum number of followers.followers_max
(number, optional): Maximum number of followers.categories
(array of strings, optional): Filter influencers by categories.countries
(array of strings, optional): Filter influencers by country ISO codes.
-
Response:
- List of influencers with affinity scores, baseline comparison, and uniqueness scores in JSON format.
📌 get-audience-content
Description: Retrieves audience content engagement details, including:
- Liked Content: Most popular posts, domains, emojis, hashtags, links, media, and a word cloud.
- Shared Content: Most shared content categorized similarly.
- Influential Content: Content from influential accounts.
Each category contains:
-
popularPost
: Most engaged posts. -
topDomains
: Most mentioned domains. -
topEmojis
: Most used emojis. -
topHashtags
: Most used hashtags. -
topLinks
: Most shared links. -
topMedia
: Shared media. -
wordcloud
: Most frequently used words. -
Parameters:
audience_content_id
(string): The ID of the audience content.
-
Response:
- Content engagement data in JSON format.
📌 report-summary
Description: Generates a comprehensive summary of an Audiense report, including:
-
Report metadata (title, segmentation type)
-
Full audience size
-
Detailed segment information
-
Top insights for each segment (bio keywords, demographics, interests)
-
Top influencers for each segment with comparison metrics
-
Parameters:
report_id
(string): The ID of the intelligence report to summarize.
-
Response:
- Complete report summary in JSON format with structured data for each segment
- For pending reports: Status message indicating the report is still processing
- For reports without segments: Message indicating there are no segments to analyze
💡 Predefined Prompts
This server includes a preconfigured prompts
audiense-demo
: Helps analyze Audiense reports interactively.segment-matching
: A prompt to match and compare audience segments across Audiense reports, identifying similarities, unique traits, and key insights based on demographics, interests, influencers, and engagement patterns.
Usage:
- Accepts a reportName argument to find the most relevant report.
- If an ID is provided, it searches by report ID instead.
Use case: Structured guidance for audience analysis.
🛠️ Troubleshooting
Tools Not Appearing in Claude
- Check Claude Desktop logs:
tail -f ~/Library/Logs/Claude/mcp*.log
- Verify environment variables are set correctly.
- Ensure the absolute path to index.js is correct.
Authentication Issues
- Double-check OAuth credentials.
- Ensure the refresh token is still valid.
- Verify that the required API scopes are enabled.
📜 Viewing Logs
To check server logs:
For MacOS/Linux:
tail -n 20 -f ~/Library/Logs/Claude/mcp*.log
For Windows:
Get-Content -Path "$env:AppData\Claude\Logs\mcp*.log" -Wait -Tail 20
🔐 Security Considerations
- Keep API credentials secure – never expose them in public repositories.
- Use environment variables to manage sensitive data.
📄 License
This project is licensed under the Apache 2.0 License. See the LICENSE file for more details.
伺服器配置
{
"mcpServers": {
"mcp-audiense-insights": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--audienseco--mcp-audiense-insights--mcp-audiense-insights",
"node ./build/index.js"
],
"env": {
"AUDIENSE_CLIENT_ID": "audiense-client-id",
"AUDIENSE_CLIENT_SECRET": "audiense-client-secret",
"TWITTER_BEARER_TOKEN": "twitter-bearer-token"
}
}
}
}