Graphiti

Em Destaque
Criado porgetzepgetzep

Construir Grafos de Conhecimento em Tempo Real para Agentes de IA

Visão geral

O que é Graphiti?

Graphiti é um framework inovador projetado para construir grafos de conhecimento em tempo real para agentes de IA. Ele permite que os desenvolvedores criem estruturas de dados dinâmicas e interconectadas que podem aprimorar as capacidades dos sistemas de inteligência artificial. Ao aproveitar o Graphiti, os usuários podem gerenciar e visualizar eficientemente relacionamentos complexos entre pontos de dados, tornando-o uma ferramenta essencial para o desenvolvimento de IA.

Recursos do Graphiti

  • Processamento de Dados em Tempo Real: O Graphiti permite atualizações em tempo real nos grafos de conhecimento, garantindo que os agentes de IA tenham acesso às informações mais atuais.
  • Interface Amigável: O framework fornece uma interface intuitiva que simplifica o processo de criação e gerenciamento de grafos de conhecimento.
  • Escalabilidade: O Graphiti é projetado para lidar com grandes conjuntos de dados, tornando-o adequado para aplicações que vão desde pequenos projetos até soluções em nível empresarial.
  • Capacidades de Integração: Ele pode se integrar facilmente a várias fontes de dados e APIs, permitindo a importação e exportação de dados de forma contínua.
  • Ferramentas de Visualização: O Graphiti inclui ferramentas de visualização integradas que ajudam os usuários a entender os relacionamentos dentro de seus dados por meio de gráficos interativos.

Como Usar o Graphiti

  1. Instalação: Comece instalando o Graphiti através do seu gerenciador de pacotes preferido ou baixando-o do repositório oficial.
  2. Configuração: Configure seu ambiente especificando fontes de dados e inicializando o framework.
  3. Criar Grafos de Conhecimento: Use as ferramentas fornecidas para definir entidades e relacionamentos, construindo seu grafo de conhecimento de acordo com os requisitos do seu projeto.
  4. Atualizações em Tempo Real: Implemente feeds de dados em tempo real para manter seu grafo de conhecimento atualizado, garantindo que os agentes de IA possam tomar decisões informadas com base nas informações mais recentes.
  5. Visualização: Utilize as ferramentas de visualização para explorar e analisar seu grafo de conhecimento, obtendo insights sobre os relacionamentos dos dados.

Perguntas Frequentes

Q: Quais linguagens de programação o Graphiti suporta?

A: O Graphiti é projetado principalmente para uso com JavaScript e Python, mas pode ser integrado com outras linguagens através de APIs.

Q: O Graphiti é adequado para aplicações em larga escala?

A: Sim, o Graphiti é construído para lidar com grandes conjuntos de dados e pode escalar de acordo com as necessidades da sua aplicação.

Q: Posso integrar o Graphiti com bancos de dados existentes?

A: Absolutamente! O Graphiti suporta integração com vários bancos de dados e fontes de dados, facilitando a incorporação em seus sistemas existentes.

Q: Existe documentação disponível para o Graphiti?

A: Sim, documentação abrangente está disponível no site oficial do Graphiti, fornecendo orientações sobre instalação, uso e melhores práticas.

Q: Qual é a licença do Graphiti?

A: O Graphiti é licenciado sob a licença Apache-2.0, permitindo uso pessoal e comercial.

Detalhe

<p align="center"> <a href="https://www.getzep.com/"> <img src="https://github.com/user-attachments/assets/119c5682-9654-4257-8922-56b7cb8ffd73" width="150" alt="Zep Logo"> </a> </p> <h1 align="center"> Graphiti </h1> <h2 align="center"> Build Real-Time Knowledge Graphs for AI Agents</h2> <div align="center">

Lint Unit Tests MyPy Check

GitHub Repo stars Discord arXiv Release

</div> <div align="center">

<a href="https://trendshift.io/repositories/12986" target="_blank"><img src="https://trendshift.io/api/badge/repositories/12986" alt="getzep%2Fgraphiti | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>

</div>

:star: Help us reach more developers and grow the Graphiti community. Star this repo!

<br />

[!TIP] Check out the new MCP server for Graphiti! Give Claude, Cursor, and other MCP clients powerful Knowledge Graph-based memory.

Graphiti is a framework for building and querying temporally-aware knowledge graphs, specifically tailored for AI agents operating in dynamic environments. Unlike traditional retrieval-augmented generation (RAG) methods, Graphiti continuously integrates user interactions, structured and unstructured enterprise data, and external information into a coherent, queryable graph. The framework supports incremental data updates, efficient retrieval, and precise historical queries without requiring complete graph recomputation, making it suitable for developing interactive, context-aware AI applications.

Use Graphiti to:

  • Integrate and maintain dynamic user interactions and business data.
  • Facilitate state-based reasoning and task automation for agents.
  • Query complex, evolving data with semantic, keyword, and graph-based search methods.
<br /> <p align="center"> <img src="images/graphiti-graph-intro.gif" alt="Graphiti temporal walkthrough" width="700px"> </p> <br />

A knowledge graph is a network of interconnected facts, such as "Kendra loves Adidas shoes." Each fact is a "triplet" represented by two entities, or nodes ("Kendra", "Adidas shoes"), and their relationship, or edge ("loves"). Knowledge Graphs have been explored extensively for information retrieval. What makes Graphiti unique is its ability to autonomously build a knowledge graph while handling changing relationships and maintaining historical context.

Graphiti and Zep Memory

Graphiti powers the core of Zep's memory layer for AI Agents.

Using Graphiti, we've demonstrated Zep is the State of the Art in Agent Memory.

Read our paper: Zep: A Temporal Knowledge Graph Architecture for Agent Memory.

We're excited to open-source Graphiti, believing its potential reaches far beyond AI memory applications.

<p align="center"> <a href="https://arxiv.org/abs/2501.13956"><img src="images/arxiv-screenshot.png" alt="Zep: A Temporal Knowledge Graph Architecture for Agent Memory" width="700px"></a> </p>

Why Graphiti?

Traditional RAG approaches often rely on batch processing and static data summarization, making them inefficient for frequently changing data. Graphiti addresses these challenges by providing:

  • Real-Time Incremental Updates: Immediate integration of new data episodes without batch recomputation.
  • Bi-Temporal Data Model: Explicit tracking of event occurrence and ingestion times, allowing accurate point-in-time queries.
  • Efficient Hybrid Retrieval: Combines semantic embeddings, keyword (BM25), and graph traversal to achieve low-latency queries without reliance on LLM summarization.
  • Custom Entity Definitions: Flexible ontology creation and support for developer-defined entities through straightforward Pydantic models.
  • Scalability: Efficiently manages large datasets with parallel processing, suitable for enterprise environments.
<p align="center"> <img src="/images/graphiti-intro-slides-stock-2.gif" alt="Graphiti structured + unstructured demo" width="700px"> </p>

Graphiti vs. GraphRAG

| Aspect | GraphRAG | Graphiti | | -- | - | | | Primary Use | Static document summarization | Dynamic data management | | Data Handling | Batch-oriented processing | Continuous, incremental updates | | Knowledge Structure | Entity clusters & community summaries | Episodic data, semantic entities, communities | | Retrieval Method | Sequential LLM summarization | Hybrid semantic, keyword, and graph-based search | | Adaptability | Low | High | | Temporal Handling | Basic timestamp tracking | Explicit bi-temporal tracking | | Contradiction Handling | LLM-driven summarization judgments | Temporal edge invalidation | | Query Latency | Seconds to tens of seconds | Typically sub-second latency | | Custom Entity Types | No | Yes, customizable | | Scalability | Moderate | High, optimized for large datasets |

Graphiti is specifically designed to address the challenges of dynamic and frequently updated datasets, making it particularly suitable for applications requiring real-time interaction and precise historical queries.

Installation

Requirements:

  • Python 3.10 or higher
  • Neo4j 5.26 / FalkorDB 1.1.2 or higher (serves as the embeddings storage backend)
  • OpenAI API key (for LLM inference and embedding)

[!IMPORTANT] Graphiti works best with LLM services that support Structured Output (such as OpenAI and Gemini). Using other services may result in incorrect output schemas and ingestion failures. This is particularly problematic when using smaller models.

Optional:

  • Google Gemini, Anthropic, or Groq API key (for alternative LLM providers)

[!TIP] The simplest way to install Neo4j is via Neo4j Desktop. It provides a user-friendly interface to manage Neo4j instances and databases.

pip install graphiti-core

or

poetry add graphiti-core

You can also install optional LLM providers as extras:

### Install with Anthropic support
pip install graphiti-core[anthropic]

### Install with Groq support
pip install graphiti-core[groq]

### Install with Google Gemini support
pip install graphiti-core[google-genai]

### Install with multiple providers
pip install graphiti-core[anthropic,groq,google-genai]

Quick Start

[!IMPORTANT] Graphiti uses OpenAI for LLM inference and embedding. Ensure that an OPENAI_API_KEY is set in your environment. Support for Anthropic and Groq LLM inferences is available, too. Other LLM providers may be supported via OpenAI compatible APIs.

For a complete working example, see the Quickstart Example in the examples directory. The quickstart demonstrates:

  1. Connecting to a Neo4j database
  2. Initializing Graphiti indices and constraints
  3. Adding episodes to the graph (both text and structured JSON)
  4. Searching for relationships (edges) using hybrid search
  5. Reranking search results using graph distance
  6. Searching for nodes using predefined search recipes

The example is fully documented with clear explanations of each functionality and includes a comprehensive README with setup instructions and next steps.

MCP Server

The mcp_server directory contains a Model Context Protocol (MCP) server implementation for Graphiti. This server allows AI assistants to interact with Graphiti's knowledge graph capabilities through the MCP protocol.

Key features of the MCP server include:

  • Episode management (add, retrieve, delete)
  • Entity management and relationship handling
  • Semantic and hybrid search capabilities
  • Group management for organizing related data
  • Graph maintenance operations

The MCP server can be deployed using Docker with Neo4j, making it easy to integrate Graphiti into your AI assistant workflows.

For detailed setup instructions and usage examples, see the MCP server README.

REST Service

The server directory contains an API service for interacting with the Graphiti API. It is built using FastAPI.

Please see the server README for more information.

Optional Environment Variables

In addition to the Neo4j and OpenAi-compatible credentials, Graphiti also has a few optional environment variables. If you are using one of our supported models, such as Anthropic or Voyage models, the necessary environment variables must be set.

USE_PARALLEL_RUNTIME is an optional boolean variable that can be set to true if you wish to enable Neo4j's parallel runtime feature for several of our search queries. Note that this feature is not supported for Neo4j Community edition or for smaller AuraDB instances, as such this feature is off by default.

Using Graphiti with Azure OpenAI

Graphiti supports Azure OpenAI for both LLM inference and embeddings. To use Azure OpenAI, you'll need to configure both the LLM client and embedder with your Azure OpenAI credentials.

from openai import AsyncAzureOpenAI
from graphiti_core import Graphiti
from graphiti_core.llm_client import LLMConfig, OpenAIClient
from graphiti_core.embedder.openai import OpenAIEmbedder, OpenAIEmbedderConfig
from graphiti_core.cross_encoder.openai_reranker_client import OpenAIRerankerClient

### Azure OpenAI configuration
api_key = "<your-api-key>"
api_version = "<your-api-version>"
azure_endpoint = "<your-azure-endpoint>"

### Create Azure OpenAI client for LLM
azure_openai_client = AsyncAzureOpenAI(
    api_key=api_key,
    api_version=api_version,
    azure_endpoint=azure_endpoint
)

### Create LLM Config with your Azure deployed model names
azure_llm_config = LLMConfig(
    small_model="gpt-4.1-nano",
    model="gpt-4.1-mini",
)

### Initialize Graphiti with Azure OpenAI clients
graphiti = Graphiti(
    "bolt://localhost:7687",
    "neo4j",
    "password",
    llm_client=OpenAIClient(
        llm_config=azure_llm_config,
        client=azure_openai_client
    ),
    embedder=OpenAIEmbedder(
        config=OpenAIEmbedderConfig(
            embedding_model="text-embedding-3-small"  # Use your Azure deployed embedding model name
        ),
        client=azure_openai_client
    ),
    # Optional: Configure the OpenAI cross encoder with Azure OpenAI
    cross_encoder=OpenAIRerankerClient(
        llm_config=azure_llm_config,
        client=azure_openai_client
    )
)

### Now you can use Graphiti with Azure OpenAI

Make sure to replace the placeholder values with your actual Azure OpenAI credentials and specify the correct embedding model name that's deployed in your Azure OpenAI service.

Using Graphiti with Google Gemini

Graphiti supports Google's Gemini models for both LLM inference and embeddings. To use Gemini, you'll need to configure both the LLM client and embedder with your Google API key.

Install Graphiti:

poetry add "graphiti-core[google-genai]"

### or

uv add "graphiti-core[google-genai]"
from graphiti_core import Graphiti
from graphiti_core.llm_client.gemini_client import GeminiClient, LLMConfig
from graphiti_core.embedder.gemini import GeminiEmbedder, GeminiEmbedderConfig

### Google API key configuration
api_key = "<your-google-api-key>"

### Initialize Graphiti with Gemini clients
graphiti = Graphiti(
    "bolt://localhost:7687",
    "neo4j",
    "password",
    llm_client=GeminiClient(
        config=LLMConfig(
            api_key=api_key,
            model="gemini-2.0-flash"
        )
    ),
    embedder=GeminiEmbedder(
        config=GeminiEmbedderConfig(
            api_key=api_key,
            embedding_model="embedding-001"
        )
    )
)

### Now you can use Graphiti with Google Gemini

Using Graphiti with Ollama (Local LLM)

Graphiti supports Ollama for running local LLMs and embedding models via Ollama's OpenAI-compatible API. This is ideal for privacy-focused applications or when you want to avoid API costs.

Install the models: ollama pull deepseek-r1:7b # LLM ollama pull nomic-embed-text # embeddings

from graphiti_core import Graphiti
from graphiti_core.llm_client.config import LLMConfig
from graphiti_core.llm_client.openai_client import OpenAIClient
from graphiti_core.embedder.openai import OpenAIEmbedder, OpenAIEmbedderConfig
from graphiti_core.cross_encoder.openai_reranker_client import OpenAIRerankerClient

### Configure Ollama LLM client
llm_config = LLMConfig(
    api_key="abc",  # Ollama doesn't require a real API key
    model="deepseek-r1:7b",
    small_model="deepseek-r1:7b",
    base_url="http://localhost:11434/v1", # Ollama provides this port
)

llm_client = OpenAIClient(config=llm_config)

### Initialize Graphiti with Ollama clients
graphiti = Graphiti(
    "bolt://localhost:7687",
    "neo4j",
    "password",
    llm_client=llm_client,
    embedder=OpenAIEmbedder(
        config=OpenAIEmbedderConfig(
            api_key="abc",
            embedding_model="nomic-embed-text",
            embedding_dim=768,
            base_url="http://localhost:11434/v1",
        )
    ),
    cross_encoder=OpenAIRerankerClient(client=llm_client, config=llm_config),
)

### Now you can use Graphiti with local Ollama models

Ensure Ollama is running (ollama serve) and that you have pulled the models you want to use.

Documentation

Status and Roadmap

Graphiti is under active development. We aim to maintain API stability while working on:

  • Supporting custom graph schemas:
    • Allow developers to provide their own defined node and edge classes when ingesting episodes
    • Enable more flexible knowledge representation tailored to specific use cases
  • Enhancing retrieval capabilities with more robust and configurable options
  • Graphiti MCP Server
  • Expanding test coverage to ensure reliability and catch edge cases

Contributing

We encourage and appreciate all forms of contributions, whether it's code, documentation, addressing GitHub Issues, or answering questions in the Graphiti Discord channel. For detailed guidelines on code contributions, please refer to CONTRIBUTING.

Support

Join the Zep Discord server and make your way to the #Graphiti channel!

Configuração do Servidor

{
  "mcpServers": {
    "graphiti-memory": {
      "transport": "stdio",
      "command": "/Users/<user>/.local/bin/uv",
      "args": [
        "run",
        "--isolated",
        "--directory",
        "/Users/<user>>/dev/zep/graphiti/mcp_server",
        "--project",
        ".",
        "graphiti_mcp_server.py",
        "--transport",
        "stdio"
      ],
      "env": {
        "NEO4J_URI": "bolt://localhost:7687",
        "NEO4J_USER": "neo4j",
        "NEO4J_PASSWORD": "password",
        "OPENAI_API_KEY": "sk-XXXXXXXX",
        "MODEL_NAME": "gpt-4.1-mini"
      }
    }
  }
}

Informações do Projeto

Em Destaque
Autor
getzep
Criado em
Jun 25, 2025
Estrela
11671
Idioma
Python
Etiquetas

Graphiti Alternativa

Para algumas alternativas a Graphiti que você pode precisar, fornecemos sites divididos por categoria.

A documentação do Microsoft Learn MCP Server implementa o Protocolo de Contexto de Modelo (MCP) que fornece aos assistentes de IA acesso em tempo real à documentação oficial da Microsoft.

Ver Mais >>