Construir Grafos de Conocimiento en Tiempo Real para Agentes de IA
Resumen
¿Qué es Graphiti?
Graphiti es un marco innovador diseñado para construir gráficos de conocimiento en tiempo real para agentes de IA. Permite a los desarrolladores crear estructuras de datos dinámicas e interconectadas que pueden mejorar las capacidades de los sistemas de inteligencia artificial. Al aprovechar Graphiti, los usuarios pueden gestionar y visualizar de manera eficiente relaciones complejas entre puntos de datos, convirtiéndolo en una herramienta esencial para el desarrollo de IA.
Características de Graphiti
- Procesamiento de Datos en Tiempo Real: Graphiti permite actualizaciones en tiempo real de los gráficos de conocimiento, asegurando que los agentes de IA tengan acceso a la información más actual.
- Interfaz Amigable: El marco proporciona una interfaz intuitiva que simplifica el proceso de creación y gestión de gráficos de conocimiento.
- Escalabilidad: Graphiti está diseñado para manejar grandes conjuntos de datos, lo que lo hace adecuado para aplicaciones que van desde proyectos pequeños hasta soluciones a nivel empresarial.
- Capacidades de Integración: Puede integrarse fácilmente con diversas fuentes de datos y APIs, permitiendo una importación y exportación de datos sin problemas.
- Herramientas de Visualización: Graphiti incluye herramientas de visualización integradas que ayudan a los usuarios a entender las relaciones dentro de sus datos a través de gráficos interactivos.
Cómo Usar Graphiti
- Instalación: Comienza instalando Graphiti a través de tu gestor de paquetes preferido o descargándolo del repositorio oficial.
- Configuración: Configura tu entorno especificando las fuentes de datos e inicializando el marco.
- Crear Gráficos de Conocimiento: Utiliza las herramientas proporcionadas para definir entidades y relaciones, construyendo tu gráfico de conocimiento de acuerdo con los requisitos de tu proyecto.
- Actualizaciones en Tiempo Real: Implementa flujos de datos en tiempo real para mantener tu gráfico de conocimiento actualizado, asegurando que los agentes de IA puedan tomar decisiones informadas basadas en la información más reciente.
- Visualización: Utiliza las herramientas de visualización para explorar y analizar tu gráfico de conocimiento, obteniendo información sobre las relaciones de los datos.
Preguntas Frecuentes
P: ¿Qué lenguajes de programación soporta Graphiti?
R: Graphiti está diseñado principalmente para su uso con JavaScript y Python, pero se puede integrar con otros lenguajes a través de APIs.
P: ¿Es Graphiti adecuado para aplicaciones a gran escala?
R: Sí, Graphiti está construido para manejar grandes conjuntos de datos y puede escalar según las necesidades de tu aplicación.
P: ¿Puedo integrar Graphiti con bases de datos existentes?
R: ¡Absolutamente! Graphiti soporta la integración con diversas bases de datos y fuentes de datos, facilitando su incorporación en tus sistemas existentes.
P: ¿Hay documentación disponible para Graphiti?
R: Sí, hay documentación completa disponible en el sitio web oficial de Graphiti, que proporciona orientación sobre instalación, uso y mejores prácticas.
P: ¿Cuál es la licencia de Graphiti?
R: Graphiti está licenciado bajo la licencia Apache-2.0, permitiendo su uso tanto personal como comercial.
Detalle
<a href="https://trendshift.io/repositories/12986" target="_blank"><img src="https://trendshift.io/api/badge/repositories/12986" alt="getzep%2Fgraphiti | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>:star: Help us reach more developers and grow the Graphiti community. Star this repo!
<br />[!TIP] Check out the new MCP server for Graphiti! Give Claude, Cursor, and other MCP clients powerful Knowledge Graph-based memory.
Graphiti is a framework for building and querying temporally-aware knowledge graphs, specifically tailored for AI agents operating in dynamic environments. Unlike traditional retrieval-augmented generation (RAG) methods, Graphiti continuously integrates user interactions, structured and unstructured enterprise data, and external information into a coherent, queryable graph. The framework supports incremental data updates, efficient retrieval, and precise historical queries without requiring complete graph recomputation, making it suitable for developing interactive, context-aware AI applications.
Use Graphiti to:
- Integrate and maintain dynamic user interactions and business data.
- Facilitate state-based reasoning and task automation for agents.
- Query complex, evolving data with semantic, keyword, and graph-based search methods.
A knowledge graph is a network of interconnected facts, such as "Kendra loves Adidas shoes." Each fact is a "triplet" represented by two entities, or nodes ("Kendra", "Adidas shoes"), and their relationship, or edge ("loves"). Knowledge Graphs have been explored extensively for information retrieval. What makes Graphiti unique is its ability to autonomously build a knowledge graph while handling changing relationships and maintaining historical context.
Graphiti and Zep Memory
Graphiti powers the core of Zep's memory layer for AI Agents.
Using Graphiti, we've demonstrated Zep is the State of the Art in Agent Memory.
Read our paper: Zep: A Temporal Knowledge Graph Architecture for Agent Memory.
We're excited to open-source Graphiti, believing its potential reaches far beyond AI memory applications.
<p align="center"> <a href="https://arxiv.org/abs/2501.13956"><img src="images/arxiv-screenshot.png" alt="Zep: A Temporal Knowledge Graph Architecture for Agent Memory" width="700px"></a> </p>Why Graphiti?
Traditional RAG approaches often rely on batch processing and static data summarization, making them inefficient for frequently changing data. Graphiti addresses these challenges by providing:
- Real-Time Incremental Updates: Immediate integration of new data episodes without batch recomputation.
- Bi-Temporal Data Model: Explicit tracking of event occurrence and ingestion times, allowing accurate point-in-time queries.
- Efficient Hybrid Retrieval: Combines semantic embeddings, keyword (BM25), and graph traversal to achieve low-latency queries without reliance on LLM summarization.
- Custom Entity Definitions: Flexible ontology creation and support for developer-defined entities through straightforward Pydantic models.
- Scalability: Efficiently manages large datasets with parallel processing, suitable for enterprise environments.
Graphiti vs. GraphRAG
| Aspect | GraphRAG | Graphiti | | -- | - | | | Primary Use | Static document summarization | Dynamic data management | | Data Handling | Batch-oriented processing | Continuous, incremental updates | | Knowledge Structure | Entity clusters & community summaries | Episodic data, semantic entities, communities | | Retrieval Method | Sequential LLM summarization | Hybrid semantic, keyword, and graph-based search | | Adaptability | Low | High | | Temporal Handling | Basic timestamp tracking | Explicit bi-temporal tracking | | Contradiction Handling | LLM-driven summarization judgments | Temporal edge invalidation | | Query Latency | Seconds to tens of seconds | Typically sub-second latency | | Custom Entity Types | No | Yes, customizable | | Scalability | Moderate | High, optimized for large datasets |
Graphiti is specifically designed to address the challenges of dynamic and frequently updated datasets, making it particularly suitable for applications requiring real-time interaction and precise historical queries.
Installation
Requirements:
- Python 3.10 or higher
- Neo4j 5.26 / FalkorDB 1.1.2 or higher (serves as the embeddings storage backend)
- OpenAI API key (for LLM inference and embedding)
[!IMPORTANT] Graphiti works best with LLM services that support Structured Output (such as OpenAI and Gemini). Using other services may result in incorrect output schemas and ingestion failures. This is particularly problematic when using smaller models.
Optional:
- Google Gemini, Anthropic, or Groq API key (for alternative LLM providers)
[!TIP] The simplest way to install Neo4j is via Neo4j Desktop. It provides a user-friendly interface to manage Neo4j instances and databases.
pip install graphiti-core
or
poetry add graphiti-core
You can also install optional LLM providers as extras:
### Install with Anthropic support
pip install graphiti-core[anthropic]
### Install with Groq support
pip install graphiti-core[groq]
### Install with Google Gemini support
pip install graphiti-core[google-genai]
### Install with multiple providers
pip install graphiti-core[anthropic,groq,google-genai]
Quick Start
[!IMPORTANT] Graphiti uses OpenAI for LLM inference and embedding. Ensure that an
OPENAI_API_KEY
is set in your environment. Support for Anthropic and Groq LLM inferences is available, too. Other LLM providers may be supported via OpenAI compatible APIs.
For a complete working example, see the Quickstart Example in the examples directory. The quickstart demonstrates:
- Connecting to a Neo4j database
- Initializing Graphiti indices and constraints
- Adding episodes to the graph (both text and structured JSON)
- Searching for relationships (edges) using hybrid search
- Reranking search results using graph distance
- Searching for nodes using predefined search recipes
The example is fully documented with clear explanations of each functionality and includes a comprehensive README with setup instructions and next steps.
MCP Server
The mcp_server
directory contains a Model Context Protocol (MCP) server implementation for Graphiti. This server allows AI assistants to interact with Graphiti's knowledge graph capabilities through the MCP protocol.
Key features of the MCP server include:
- Episode management (add, retrieve, delete)
- Entity management and relationship handling
- Semantic and hybrid search capabilities
- Group management for organizing related data
- Graph maintenance operations
The MCP server can be deployed using Docker with Neo4j, making it easy to integrate Graphiti into your AI assistant workflows.
For detailed setup instructions and usage examples, see the MCP server README.
REST Service
The server
directory contains an API service for interacting with the Graphiti API. It is built using FastAPI.
Please see the server README for more information.
Optional Environment Variables
In addition to the Neo4j and OpenAi-compatible credentials, Graphiti also has a few optional environment variables. If you are using one of our supported models, such as Anthropic or Voyage models, the necessary environment variables must be set.
USE_PARALLEL_RUNTIME
is an optional boolean variable that can be set to true if you wish
to enable Neo4j's parallel runtime feature for several of our search queries.
Note that this feature is not supported for Neo4j Community edition or for smaller AuraDB instances,
as such this feature is off by default.
Using Graphiti with Azure OpenAI
Graphiti supports Azure OpenAI for both LLM inference and embeddings. To use Azure OpenAI, you'll need to configure both the LLM client and embedder with your Azure OpenAI credentials.
from openai import AsyncAzureOpenAI
from graphiti_core import Graphiti
from graphiti_core.llm_client import LLMConfig, OpenAIClient
from graphiti_core.embedder.openai import OpenAIEmbedder, OpenAIEmbedderConfig
from graphiti_core.cross_encoder.openai_reranker_client import OpenAIRerankerClient
### Azure OpenAI configuration
api_key = "<your-api-key>"
api_version = "<your-api-version>"
azure_endpoint = "<your-azure-endpoint>"
### Create Azure OpenAI client for LLM
azure_openai_client = AsyncAzureOpenAI(
api_key=api_key,
api_version=api_version,
azure_endpoint=azure_endpoint
)
### Create LLM Config with your Azure deployed model names
azure_llm_config = LLMConfig(
small_model="gpt-4.1-nano",
model="gpt-4.1-mini",
)
### Initialize Graphiti with Azure OpenAI clients
graphiti = Graphiti(
"bolt://localhost:7687",
"neo4j",
"password",
llm_client=OpenAIClient(
llm_config=azure_llm_config,
client=azure_openai_client
),
embedder=OpenAIEmbedder(
config=OpenAIEmbedderConfig(
embedding_model="text-embedding-3-small" # Use your Azure deployed embedding model name
),
client=azure_openai_client
),
# Optional: Configure the OpenAI cross encoder with Azure OpenAI
cross_encoder=OpenAIRerankerClient(
llm_config=azure_llm_config,
client=azure_openai_client
)
)
### Now you can use Graphiti with Azure OpenAI
Make sure to replace the placeholder values with your actual Azure OpenAI credentials and specify the correct embedding model name that's deployed in your Azure OpenAI service.
Using Graphiti with Google Gemini
Graphiti supports Google's Gemini models for both LLM inference and embeddings. To use Gemini, you'll need to configure both the LLM client and embedder with your Google API key.
Install Graphiti:
poetry add "graphiti-core[google-genai]"
### or
uv add "graphiti-core[google-genai]"
from graphiti_core import Graphiti
from graphiti_core.llm_client.gemini_client import GeminiClient, LLMConfig
from graphiti_core.embedder.gemini import GeminiEmbedder, GeminiEmbedderConfig
### Google API key configuration
api_key = "<your-google-api-key>"
### Initialize Graphiti with Gemini clients
graphiti = Graphiti(
"bolt://localhost:7687",
"neo4j",
"password",
llm_client=GeminiClient(
config=LLMConfig(
api_key=api_key,
model="gemini-2.0-flash"
)
),
embedder=GeminiEmbedder(
config=GeminiEmbedderConfig(
api_key=api_key,
embedding_model="embedding-001"
)
)
)
### Now you can use Graphiti with Google Gemini
Using Graphiti with Ollama (Local LLM)
Graphiti supports Ollama for running local LLMs and embedding models via Ollama's OpenAI-compatible API. This is ideal for privacy-focused applications or when you want to avoid API costs.
Install the models: ollama pull deepseek-r1:7b # LLM ollama pull nomic-embed-text # embeddings
from graphiti_core import Graphiti
from graphiti_core.llm_client.config import LLMConfig
from graphiti_core.llm_client.openai_client import OpenAIClient
from graphiti_core.embedder.openai import OpenAIEmbedder, OpenAIEmbedderConfig
from graphiti_core.cross_encoder.openai_reranker_client import OpenAIRerankerClient
### Configure Ollama LLM client
llm_config = LLMConfig(
api_key="abc", # Ollama doesn't require a real API key
model="deepseek-r1:7b",
small_model="deepseek-r1:7b",
base_url="http://localhost:11434/v1", # Ollama provides this port
)
llm_client = OpenAIClient(config=llm_config)
### Initialize Graphiti with Ollama clients
graphiti = Graphiti(
"bolt://localhost:7687",
"neo4j",
"password",
llm_client=llm_client,
embedder=OpenAIEmbedder(
config=OpenAIEmbedderConfig(
api_key="abc",
embedding_model="nomic-embed-text",
embedding_dim=768,
base_url="http://localhost:11434/v1",
)
),
cross_encoder=OpenAIRerankerClient(client=llm_client, config=llm_config),
)
### Now you can use Graphiti with local Ollama models
Ensure Ollama is running (ollama serve
) and that you have pulled the models you want to use.
Documentation
Status and Roadmap
Graphiti is under active development. We aim to maintain API stability while working on:
- Supporting custom graph schemas:
- Allow developers to provide their own defined node and edge classes when ingesting episodes
- Enable more flexible knowledge representation tailored to specific use cases
- Enhancing retrieval capabilities with more robust and configurable options
- Graphiti MCP Server
- Expanding test coverage to ensure reliability and catch edge cases
Contributing
We encourage and appreciate all forms of contributions, whether it's code, documentation, addressing GitHub Issues, or answering questions in the Graphiti Discord channel. For detailed guidelines on code contributions, please refer to CONTRIBUTING.
Support
Join the Zep Discord server and make your way to the #Graphiti channel!
Configuración del Servidor
{
"mcpServers": {
"graphiti-memory": {
"transport": "stdio",
"command": "/Users/<user>/.local/bin/uv",
"args": [
"run",
"--isolated",
"--directory",
"/Users/<user>>/dev/zep/graphiti/mcp_server",
"--project",
".",
"graphiti_mcp_server.py",
"--transport",
"stdio"
],
"env": {
"NEO4J_URI": "bolt://localhost:7687",
"NEO4J_USER": "neo4j",
"NEO4J_PASSWORD": "password",
"OPENAI_API_KEY": "sk-XXXXXXXX",
"MODEL_NAME": "gpt-4.1-mini"
}
}
}
}