向量化Mcp服务器
概览
什么是 Vectorize MCP 服务器?
Vectorize MCP 服务器是一个开源项目,旨在促进在 Vectorize 生态系统内的数据管理和处理。它作为一个后端服务器,处理与数据操作、存储和检索相关的各种任务,是开发人员使用 Vectorize 技术时的重要组成部分。
Vectorize MCP 服务器的特点
- 数据管理:高效管理和处理大型数据集。
- API 集成:通过强大的 API 无缝集成其他服务,允许灵活的数据处理。
- 开源:作为一个开源项目,鼓励社区贡献和透明度。
- 可扩展性:设计上可以根据您的需求进行扩展,无论您是在进行小型项目还是大型企业解决方案。
- 文档:提供全面的文档,帮助开发人员快速入门并有效利用服务器。
如何使用 Vectorize MCP 服务器
- 安装:首先从 GitHub 克隆仓库,并按照文档中提供的安装说明进行操作。
- 配置:根据您的项目需求配置服务器设置。这可能包括设置数据库连接和 API 密钥。
- API 使用:利用提供的 API 端点与服务器进行交互。您可以执行数据检索、更新和删除等操作。
- 测试:进行全面测试,以确保服务器在您的应用程序中按预期运行。
- 部署:一旦一切设置和测试完成,将服务器部署到您的生产环境中。
常见问题解答
问:Vectorize MCP 服务器是免费使用的吗?
答:是的,它是一个开源项目,依据 MIT 许可证免费使用。
问:我可以为 Vectorize MCP 服务器贡献吗?
答:当然可以!欢迎贡献。您可以在 GitHub 仓库中提交问题、功能请求或拉取请求。
问:我在哪里可以找到文档?
答:文档可在 docs.vectorize.io/api/api-mcp-server 找到。
问:支持哪些编程语言?
答:服务器主要使用与 Vectorize 生态系统兼容的语言构建,但可以与任何能够发出 HTTP 请求的语言集成。
问:我该如何报告错误?
答:您可以通过在 GitHub 仓库中打开一个问题来报告错误,提供尽可能多的细节,以帮助开发人员解决问题。
详情
Vectorize MCP Server
A Model Context Protocol (MCP) server implementation that integrates with Vectorize for advanced Vector retrieval and text extraction.
<a href="https://glama.ai/mcp/servers/pxwbgk0kzr"> <img width="380" height="200" src="https://glama.ai/mcp/servers/pxwbgk0kzr/badge" alt="Vectorize MCP server" /> </a>Installation
Running with npx
export VECTORIZE_ORG_ID=YOUR_ORG_ID
export VECTORIZE_TOKEN=YOUR_TOKEN
export VECTORIZE_PIPELINE_ID=YOUR_PIPELINE_ID
npx -y @vectorize-io/vectorize-mcp-server@latest
VS Code Installation
For one-click installation, click one of the install buttons below:
Manual Installation
For the quickest installation, use the one-click install buttons at the top of this section.
To install manually, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P
and typing Preferences: Open User Settings (JSON)
.
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "org_id",
"description": "Vectorize Organization ID"
},
{
"type": "promptString",
"id": "token",
"description": "Vectorize Token",
"password": true
},
{
"type": "promptString",
"id": "pipeline_id",
"description": "Vectorize Pipeline ID"
}
],
"servers": {
"vectorize": {
"command": "npx",
"args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
"env": {
"VECTORIZE_ORG_ID": "${input:org_id}",
"VECTORIZE_TOKEN": "${input:token}",
"VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
}
}
}
}
}
Optionally, you can add the following to a file called .vscode/mcp.json
in your workspace to share the configuration with others:
{
"inputs": [
{
"type": "promptString",
"id": "org_id",
"description": "Vectorize Organization ID"
},
{
"type": "promptString",
"id": "token",
"description": "Vectorize Token",
"password": true
},
{
"type": "promptString",
"id": "pipeline_id",
"description": "Vectorize Pipeline ID"
}
],
"servers": {
"vectorize": {
"command": "npx",
"args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
"env": {
"VECTORIZE_ORG_ID": "${input:org_id}",
"VECTORIZE_TOKEN": "${input:token}",
"VECTORIZE_PIPELINE_ID": "${input:pipeline_id}"
}
}
}
}
Configuration on Claude/Windsurf/Cursor/Cline
{
"mcpServers": {
"vectorize": {
"command": "npx",
"args": ["-y", "@vectorize-io/vectorize-mcp-server@latest"],
"env": {
"VECTORIZE_ORG_ID": "your-org-id",
"VECTORIZE_TOKEN": "your-token",
"VECTORIZE_PIPELINE_ID": "your-pipeline-id"
}
}
}
}
Tools
Retrieve documents
Perform vector search and retrieve documents (see official API):
{
"name": "retrieve",
"arguments": {
"question": "Financial health of the company",
"k": 5
}
}
Text extraction and chunking (Any file to Markdown)
Extract text from a document and chunk it into Markdown format (see official API):
{
"name": "extract",
"arguments": {
"base64document": "base64-encoded-document",
"contentType": "application/pdf"
}
}
Deep Research
Generate a Private Deep Research from your pipeline (see official API):
{
"name": "deep-research",
"arguments": {
"query": "Generate a financial status report about the company",
"webSearch": true
}
}
Development
npm install
npm run dev
Release
Change the package.json version and then:
git commit -am "x.y.z"
git tag x.y.z
git push origin
git push origin --tags
Contributing
- Fork the repository
- Create your feature branch
- Submit a pull request
Server配置
{
"mcpServers": {
"vectorize-mcp-server": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"ghcr.io/metorial/mcp-container--vectorize-io--vectorize-mcp-server--vectorize-mcp-server",
"node dist/index.js"
],
"env": {
"VECTORIZE_ORG_ID": "vectorize-org-id",
"VECTORIZE_TOKEN": "vectorize-token",
"VECTORIZE_PIPELINE_ID": "vectorize-pipeline-id"
}
}
}
}