Octodet Elasticsearch MCP 服务器
概览
Octodet Elasticsearch MCP 服务器
Octodet Elasticsearch MCP 服务器是一个强大的模型上下文协议(MCP)服务器,旨在与 Elasticsearch 集群无缝交互。它为基于 LLM 的应用程序提供了一种标准化的方式,以在 Elasticsearch 中执行各种操作,如搜索、更新和管理数据。
特性
- 完整的 Elasticsearch 操作:轻松执行文档和索引的完整 CRUD 操作。
- 批量操作:通过在单个 API 调用中处理多个操作来提高性能。
- 基于查询的更新/删除:根据特定查询修改或删除文档。
- 集群管理:监控 Elasticsearch 集群的健康状况,包括分片和模板。
- 高级搜索:利用 Elasticsearch DSL 查询的全部功能,并支持内置高亮。
如何安装
作为 NPM 包
要全局安装 Octodet Elasticsearch MCP 服务器,请运行:
npm install -g @octodet/elasticsearch-mcp
或者,您可以直接使用 npx:
npx @octodet/elasticsearch-mcp
从源代码
- 克隆代码库。
- 安装必要的依赖项:
npm install
- 构建服务器:
npm run build
与 MCP 客户端的集成
VS Code 集成
要与 VS Code MCP 扩展集成,请将以下配置添加到您的 settings.json
中:
"mcp.servers": {
"elasticsearch": {
"command": "npx",
"args": [
"-y", "@octodet/elasticsearch-mcp"
],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
Claude Desktop 集成
对于 Claude Desktop,请按如下方式配置您的设置:
{
"mcpServers": {
"elasticsearch": {
"command": "npx",
"args": ["-y", "@octodet/elasticsearch-mcp"],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}
本地开发
如果您在本地开发 MCP 服务器,请配置您的客户端以使用本地构建:
{
"mcpServers": {
"elasticsearch": {
"command": "node",
"args": ["path/to/build/index.js"],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}
配置
服务器可以使用以下环境变量进行配置:
| 变量 | 描述 | 默认值 | | | | | | ES_URL | Elasticsearch 服务器 URL | http://localhost:9200 | | ES_API_KEY | 用于身份验证的 API 密钥 | | | ES_USERNAME | 用于身份验证的用户名 | | | ES_PASSWORD | 用于身份验证的密码 | | | ES_CA_CERT | 自定义 CA 证书的路径 | | | ES_VERSION | Elasticsearch 版本(8 或 9) | 8 | | ES_SSL_SKIP_VERIFY | 跳过 SSL 验证 | false | | ES_PATH_PREFIX | Elasticsearch 的路径前缀 | |
工具
服务器包括 16 个用于各种 Elasticsearch 操作的 MCP 工具,每个工具都有所需和可选参数的文档。
1. 列出索引
检索所有可用 Elasticsearch 索引的详细信息。
参数:
indexPattern
(可选,字符串):用于过滤索引的模式(例如,“logs-”,“my-index-”)
示例:
{
"indexPattern": "logs-*"
}
2. 获取映射
获取特定 Elasticsearch 索引的字段映射。
参数:
index
(必需,字符串):要检索映射的索引名称。
示例:
{
"index": "my-index"
}
3. 搜索
使用提供的查询 DSL 和高亮进行 Elasticsearch 搜索。
参数:
index
(必需,字符串):要搜索的索引或索引(支持以逗号分隔的值)。queryBody
(必需,对象):Elasticsearch 查询 DSL 主体。highlight
(可选,布尔值):是否为搜索结果启用高亮(默认:true)。
示例:
{
"index": "my-index",
"queryBody": {
"query": {
"match": {
"content": "search term"
}
},
"size": 10,
"from": 0,
"sort": [{ "_score": { "order": "desc" } }]
},
"highlight": true
}
4. 获取集群健康
获取有关 Elasticsearch 集群的健康信息。
参数:
- 无需参数。
示例:
{}
5. 获取分片
检索所有或特定索引的分片信息。
参数:
index
(可选,字符串):要获取分片信息的特定索引。如果省略,则返回所有索引的分片。
示例:
{
"index": "my-index"
}
6. 添加文档
将新文档插入特定 Elasticsearch 索引中。
参数:
index
(必需,字符串):文档将添加到的索引。document
(必需,对象):要添加的文档内容。id
(可选,字符串):文档 ID。如果省略,Elasticsearch 会自动生成一个。
示例:
{
"index": "my-index",
"id": "doc1",
"document": {
"title": "My Document",
"content": "Document content here",
"timestamp": "2025-06-23T10:30:00Z",
"tags": ["important", "draft"]
}
}
7. 更新文档
修改特定 Elasticsearch 索引中的现有文档。
参数:
index
(必需,字符串):包含文档的索引。id
(必需,字符串):要更新的文档 ID。document
(必需,对象):包含要更新字段的部分文档。
示例:
{
"index": "my-index",
"id": "doc1",
"document": {
"title": "Updated Document Title",
"last_modified": "2025-06-23T10:30:00Z"
}
}
8. 删除文档
从特定 Elasticsearch 索引中删除文档。
参数:
index
(必需,字符串):包含文档的索引。id
(必需,字符串):要删除的文档 ID。
示例:
{
"index": "my-index",
"id": "doc1"
}
9. 通过查询更新
根据查询更新 Elasticsearch 索引中的文档。
参数:
index
(必需,字符串):要更新文档的索引。query
(必需,对象):用于匹配要更新文档的 Elasticsearch 查询。script
(必需,对象):用于更新匹配文档的脚本。conflicts
(可选,字符串):如何处理版本冲突(“abort”或“proceed”,默认:“abort”)。refresh
(可选,布尔值):操作后是否刷新索引(默认:false)。
示例:
{
"index": "my-index",
"query": {
"term": {
"status": "active"
}
},
"script": {
"source": "ctx._source.status = params.newStatus; ctx._source.updated_at = params.timestamp",
"params": {
"newStatus": "inactive",
"timestamp": "2025-06-23T10:30:00Z"
}
},
"conflicts": "proceed",
"refresh": true
}
10. 通过查询删除
根据查询删除 Elasticsearch 索引中的文档。
参数:
index
(必需,字符串):要删除文档的索引。query
(必需,对象):用于匹配要删除文档的 Elasticsearch 查询。conflicts
(可选,字符串):如何处理版本冲突(“abort”或“proceed”,默认:“abort”)。refresh
(可选,布尔值):操作后是否刷新索引(默认:false)。
示例:
{
"index": "my-index",
"query": {
"range": {
"created_date": {
"lt": "2025-01-01"
}
}
},
"conflicts": "proceed",
"refresh": true
}
11. 批量操作
在单个 API 调用中执行多个文档操作以提高性能。
参数:
operations
(必需,数组):操作对象的数组,每个对象包含:action
(必需,字符串):操作类型(“index”,“create”,“update”或“delete”)。index
(必需,字符串):此操作的索引。id
(可选,字符串):文档 ID(更新/删除时必需,索引/创建时可选)。document
(条件,对象):文档内容(索引/创建/更新操作时必需)。
示例:
{
"operations": [
{
"action": "index",
"index": "my-index",
"id": "doc1",
"document": { "title": "Document 1", "content": "Content here" }
},
{
"action": "update",
"index": "my-index",
"id": "doc2",
"document": { "title": "Updated Title" }
},
{
"action": "delete",
"index": "my-index",
"id": "doc3"
}
]
}
12. 创建索引
创建一个新的 Elasticsearch 索引,带有可选的设置和映射。
参数:
index
(必需,字符串):要创建的索引名称。settings
(可选,对象):索引设置,如分片数、复制数等。mappings
(可选,对象):字段映射,定义文档应如何被索引。
示例:
{
"index": "new-index",
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1,
"analysis": {
"analyzer": {
"custom_analyzer": {
"type": "standard",
"stopwords": "_english_"
}
}
}
},
"mappings": {
"properties": {
"title": {
"type": "text",
"analyzer": "custom_analyzer"
},
"created": {
"type": "date",
"format": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"tags": {
"type": "keyword"
}
}
}
}
13. 删除索引
永久删除 Elasticsearch 索引。
参数:
index
(必需,字符串):要删除的索引名称。
示例:
{
"index": "my-index"
}
14. 计数文档
计算索引中的文档数量,选项上可以通过查询进行过滤。
参数:
index
(必需,字符串):要计算文档的索引。query
(可选,对象):用于过滤文档以进行计数的 Elasticsearch 查询。
示例:
{
"index": "my-index",
"query": {
"bool": {
"must": [
{ "term": { "status": "active" } },
{ "range": { "created_date": { "gte": "2025-01-01" } } }
]
}
}
}
15. 获取模板
从 Elasticsearch 检索索引模板。
参数:
name
(可选,字符串):要检索的特定模板名称。如果省略,则返回所有模板。
示例:
{
"name": "logs-template"
}
16. 获取别名
从 Elasticsearch 获取索引别名。
参数:
name
(可选,字符串):要检索的特定别名名称。如果省略,则返回所有别名。
示例:
{
"name": "logs-alias"
}
开发
在开发模式下运行
要在开发期间以监视模式运行服务器,请使用:
npm run dev
协议实现
该服务器实现了 模型上下文协议,以促进 LLM 客户端与 Elasticsearch 之间的标准化通信。它提供了一整套工具,可以被 MCP 客户端调用以执行各种 Elasticsearch 操作。
添加新工具
要向服务器添加新工具:
- 使用 MCP 服务器的工具注册格式在
src/index.ts
中定义工具。 - 在
src/utils/elasticsearchService.ts
中实现必要的功能。 - 更新此 README 以记录新工具。
其他 MCP 客户端
Octodet Elasticsearch MCP 服务器可以与任何兼容 MCP 的客户端一起使用,包括:
- 通过 MCP 插件的 OpenAI 的 ChatGPT
- Anthropic 的 Claude Desktop
- VS Code 中的 Claude
- 使用 MCP SDK 的自定义应用程序
程序化使用
您还可以在 Node.js 应用程序中以编程方式使用服务器:
import { createOctodetElasticsearchMcpServer } from "@octodet/elasticsearch-mcp";
import { CustomTransport } from "@modelcontextprotocol/sdk/server";
// 配置 Elasticsearch 连接
const config = {
url: "http://localhost:9200",
apiKey: "your_api_key",
version: "8",
};
// 创建并启动服务器
async function startServer() {
const server = await createOctodetElasticsearchMcpServer(config);
// 连接到您的自定义传输
const transport = new CustomTransport();
await server.connect(transport);
console.log("Elasticsearch MCP 服务器已启动");
}
startServer().catch(console.error);
许可证
该项目根据 MIT 许可证授权 - 详细信息请参见 LICENSE 文件。
详情
Octodet Elasticsearch MCP Server
A Model Context Protocol (MCP) server for Elasticsearch operations, providing a comprehensive set of tools for interacting with Elasticsearch clusters through the standardized Model Context Protocol. This server enables LLM-powered applications to search, update, and manage Elasticsearch data.
Features
- Complete Elasticsearch Operations: Full CRUD operations for documents and indices
- Bulk Operations: Process multiple operations in a single API call
- Query-Based Updates/Deletes: Modify or remove documents based on queries
- Cluster Management: Monitor health, shards, and templates
- Advanced Search: Full support for Elasticsearch DSL queries with highlighting
Installation
As an NPM Package
Install the package globally:
npm install -g @octodet/elasticsearch-mcp
Or use it directly with npx:
npx @octodet/elasticsearch-mcp
From Source
- Clone this repository
- Install dependencies:
npm install
- Build the server:
npm run build
Integration with MCP Clients
VS Code Integration
Add the following configuration to your VS Code settings.json to integrate with the VS Code MCP extension:
"mcp.servers": {
"elasticsearch": {
"command": "npx",
"args": [
"-y", "@octodet/elasticsearch-mcp"
],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
Claude Desktop Integration
Configure in your Claude Desktop configuration file:
{
"mcpServers": {
"elasticsearch": {
"command": "npx",
"args": ["-y", "@octodet/elasticsearch-mcp"],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}
For Local Development
If you're developing the MCP server locally, you can configure the clients to use your local build:
{
"mcpServers": {
"elasticsearch": {
"command": "node",
"args": ["path/to/build/index.js"],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}
Configuration
The server uses the following environment variables for configuration:
| Variable | Description | Default | | | | | | ES_URL | Elasticsearch server URL | http://localhost:9200 | | ES_API_KEY | API key for authentication | | | ES_USERNAME | Username for authentication | | | ES_PASSWORD | Password for authentication | | | ES_CA_CERT | Path to custom CA certificate | | | ES_VERSION | Elasticsearch version (8 or 9) | 8 | | ES_SSL_SKIP_VERIFY | Skip SSL verification | false | | ES_PATH_PREFIX | Path prefix for Elasticsearch | |
Tools
The server provides 16 MCP tools for Elasticsearch operations. Each tool is documented with its required and optional parameters:
1. List Indices
List all available Elasticsearch indices with detailed information.
Parameters:
indexPattern
(optional, string): Pattern to filter indices (e.g., "logs-", "my-index-")
Example:
{
"indexPattern": "logs-*"
}
2. Get Mappings
Get field mappings for a specific Elasticsearch index.
Parameters:
index
(required, string): The name of the index to get mappings for
Example:
{
"index": "my-index"
}
3. Search
Perform an Elasticsearch search with the provided query DSL and highlighting.
Parameters:
index
(required, string): The index or indices to search in (supports comma-separated values)queryBody
(required, object): The Elasticsearch query DSL bodyhighlight
(optional, boolean): Enable search result highlighting (default: true)
Example:
{
"index": "my-index",
"queryBody": {
"query": {
"match": {
"content": "search term"
}
},
"size": 10,
"from": 0,
"sort": [{ "_score": { "order": "desc" } }]
},
"highlight": true
}
4. Get Cluster Health
Get health information about the Elasticsearch cluster.
Parameters:
- None required
Example:
{}
5. Get Shards
Get shard information for all or specific indices.
Parameters:
index
(optional, string): Specific index to get shard information for. If omitted, returns shards for all indices
Example:
{
"index": "my-index"
}
6. Add Document
Add a new document to a specific Elasticsearch index.
Parameters:
index
(required, string): The index to add the document todocument
(required, object): The document content to addid
(optional, string): Document ID. If omitted, Elasticsearch will generate one automatically
Example:
{
"index": "my-index",
"id": "doc1",
"document": {
"title": "My Document",
"content": "Document content here",
"timestamp": "2025-06-23T10:30:00Z",
"tags": ["important", "draft"]
}
}
7. Update Document
Update an existing document in a specific Elasticsearch index.
Parameters:
index
(required, string): The index containing the documentid
(required, string): The ID of the document to updatedocument
(required, object): The partial document with fields to update
Example:
{
"index": "my-index",
"id": "doc1",
"document": {
"title": "Updated Document Title",
"last_modified": "2025-06-23T10:30:00Z"
}
}
8. Delete Document
Delete a document from a specific Elasticsearch index.
Parameters:
index
(required, string): The index containing the documentid
(required, string): The ID of the document to delete
Example:
{
"index": "my-index",
"id": "doc1"
}
9. Update By Query
Update documents in an Elasticsearch index based on a query.
Parameters:
index
(required, string): The index to update documents inquery
(required, object): Elasticsearch query to match documents for updatescript
(required, object): Script to execute for updating matched documentsconflicts
(optional, string): How to handle version conflicts ("abort" or "proceed", default: "abort")refresh
(optional, boolean): Whether to refresh the index after the operation (default: false)
Example:
{
"index": "my-index",
"query": {
"term": {
"status": "active"
}
},
"script": {
"source": "ctx._source.status = params.newStatus; ctx._source.updated_at = params.timestamp",
"params": {
"newStatus": "inactive",
"timestamp": "2025-06-23T10:30:00Z"
}
},
"conflicts": "proceed",
"refresh": true
}
10. Delete By Query
Delete documents in an Elasticsearch index based on a query.
Parameters:
index
(required, string): The index to delete documents fromquery
(required, object): Elasticsearch query to match documents for deletionconflicts
(optional, string): How to handle version conflicts ("abort" or "proceed", default: "abort")refresh
(optional, boolean): Whether to refresh the index after the operation (default: false)
Example:
{
"index": "my-index",
"query": {
"range": {
"created_date": {
"lt": "2025-01-01"
}
}
},
"conflicts": "proceed",
"refresh": true
}
11. Bulk Operations
Perform multiple document operations in a single API call for better performance.
Parameters:
operations
(required, array): Array of operation objects, each containing:action
(required, string): The operation type ("index", "create", "update", or "delete")index
(required, string): The index for this operationid
(optional, string): Document ID (required for update/delete, optional for index/create)document
(conditional, object): Document content (required for index/create/update operations)
Example:
{
"operations": [
{
"action": "index",
"index": "my-index",
"id": "doc1",
"document": { "title": "Document 1", "content": "Content here" }
},
{
"action": "update",
"index": "my-index",
"id": "doc2",
"document": { "title": "Updated Title" }
},
{
"action": "delete",
"index": "my-index",
"id": "doc3"
}
]
}
12. Create Index
Create a new Elasticsearch index with optional settings and mappings.
Parameters:
index
(required, string): The name of the index to createsettings
(optional, object): Index settings like number of shards, replicas, etc.mappings
(optional, object): Field mappings defining how documents should be indexed
Example:
{
"index": "new-index",
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1,
"analysis": {
"analyzer": {
"custom_analyzer": {
"type": "standard",
"stopwords": "_english_"
}
}
}
},
"mappings": {
"properties": {
"title": {
"type": "text",
"analyzer": "custom_analyzer"
},
"created": {
"type": "date",
"format": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"tags": {
"type": "keyword"
}
}
}
}
13. Delete Index
Delete an Elasticsearch index permanently.
Parameters:
index
(required, string): The name of the index to delete
Example:
{
"index": "my-index"
}
14. Count Documents
Count documents in an index, optionally filtered by a query.
Parameters:
index
(required, string): The index to count documents inquery
(optional, object): Elasticsearch query to filter documents for counting
Example:
{
"index": "my-index",
"query": {
"bool": {
"must": [
{ "term": { "status": "active" } },
{ "range": { "created_date": { "gte": "2025-01-01" } } }
]
}
}
}
15. Get Templates
Get index templates from Elasticsearch.
Parameters:
name
(optional, string): Specific template name to retrieve. If omitted, returns all templates
Example:
{
"name": "logs-template"
}
16. Get Aliases
Get index aliases from Elasticsearch.
Parameters:
name
(optional, string): Specific alias name to retrieve. If omitted, returns all aliases
Example:
{
"name": "logs-alias"
}
Development
Running in Development Mode
Run the server in watch mode during development:
npm run dev
Protocol Implementation
This server implements the Model Context Protocol to enable standardized communication between LLM clients and Elasticsearch. It provides a set of tools that can be invoked by MCP clients to perform various Elasticsearch operations.
Adding New Tools
To add a new tool to the server:
- Define the tool in
src/index.ts
using the MCP server's tool registration format - Implement the necessary functionality in
src/utils/elasticsearchService.ts
- Update this README to document the new tool
Other MCP Clients
This server can be used with any MCP-compatible client, including:
- OpenAI's ChatGPT via MCP plugins
- Anthropic's Claude Desktop
- Claude in VS Code
- Custom applications using the MCP SDK
Programmatic Usage
You can also use the server programmatically in your Node.js applications:
import { createOctodetElasticsearchMcpServer } from "@octodet/elasticsearch-mcp";
import { CustomTransport } from "@modelcontextprotocol/sdk/server";
// Configure the Elasticsearch connection
const config = {
url: "http://localhost:9200",
apiKey: "your_api_key",
version: "8",
};
// Create and start the server
async function startServer() {
const server = await createOctodetElasticsearchMcpServer(config);
// Connect to your custom transport
const transport = new CustomTransport();
await server.connect(transport);
console.log("Elasticsearch MCP server started");
}
startServer().catch(console.error);
License
This project is licensed under the MIT License - see the LICENSE file for details.
Server配置
{
"mcpServers": {
"elasticsearch": {
"command": "npx",
"args": [
"-y",
"@octodet/elasticsearch-mcp"
],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}