Octodet Elasticsearch MCP Server
Overview
Octodet Elasticsearch MCP Server
The Octodet Elasticsearch MCP Server is a robust Model Context Protocol (MCP) server designed for smooth interaction with Elasticsearch clusters. It offers a standardized method for LLM-powered applications to carry out various tasks such as searching, updating, and managing data within Elasticsearch.
Features
- Complete Elasticsearch Operations: Effortlessly execute full CRUD operations on documents and indices.
- Bulk Operations: Improve performance by processing multiple operations in a single API call.
- Query-Based Updates/Deletes: Change or remove documents based on specific queries.
- Cluster Management: Keep track of the health of your Elasticsearch cluster, including shards and templates.
- Advanced Search: Leverage the full capabilities of Elasticsearch DSL queries with built-in highlighting support.
How to Install
As an NPM Package
To install the Octodet Elasticsearch MCP Server globally, run:
npm install -g @octodet/elasticsearch-mcp
Alternatively, you can use it directly with npx:
npx @octodet/elasticsearch-mcp
From Source
- Clone the repository.
- Install the necessary dependencies:
npm install
- Build the server:
npm run build
Integration with MCP Clients
VS Code Integration
To integrate with the VS Code MCP extension, add the following configuration to your settings.json
:
"mcp.servers": {
"elasticsearch": {
"command": "npx",
"args": [
"-y", "@octodet/elasticsearch-mcp"
],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
Claude Desktop Integration
For Claude Desktop, configure your settings as follows:
{
"mcpServers": {
"elasticsearch": {
"command": "npx",
"args": ["-y", "@octodet/elasticsearch-mcp"],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}
For Local Development
If you are developing the MCP server locally, configure your clients to use your local build:
{
"mcpServers": {
"elasticsearch": {
"command": "node",
"args": ["path/to/build/index.js"],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}
Configuration
The server can be configured using the following environment variables:
Variable | Description | Default |
---|---|---|
ES_URL | Elasticsearch server URL | http://localhost:9200 |
ES_API_KEY | API key for authentication | |
ES_USERNAME | Username for authentication | |
ES_PASSWORD | Password for authentication | |
ES_CA_CERT | Path to custom CA certificate | |
ES_VERSION | Elasticsearch version (8 or 9) | 8 |
ES_SSL_SKIP_VERIFY | Skip SSL verification | false |
ES_PATH_PREFIX | Path prefix for Elasticsearch |
Tools
The server includes 16 MCP tools for various Elasticsearch operations, each documented with required and optional parameters.
1. List Indices
Retrieve a list of all available Elasticsearch indices with detailed information.
Parameters:
indexPattern
(optional, string): Pattern to filter indices (e.g., "logs-", "my-index-")
Example:
{
"indexPattern": "logs-*"
}
2. Get Mappings
Fetch field mappings for a specific Elasticsearch index.
Parameters:
index
(required, string): The name of the index to retrieve mappings for.
Example:
{
"index": "my-index"
}
3. Search
Conduct an Elasticsearch search using the provided query DSL and highlighting.
Parameters:
index
(required, string): The index or indices to search in (supports comma-separated values).queryBody
(required, object): The Elasticsearch query DSL body.highlight
(optional, boolean): Enable highlighting for search results (default: true).
Example:
{
"index": "my-index",
"queryBody": {
"query": {
"match": {
"content": "search term"
}
},
"size": 10,
"from": 0,
"sort": [{ "_score": { "order": "desc" } }]
},
"highlight": true
}
4. Get Cluster Health
Obtain health information about the Elasticsearch cluster.
Parameters:
- None required.
Example:
{}
5. Get Shards
Retrieve shard information for all or specific indices.
Parameters:
index
(optional, string): Specific index to get shard information for. If omitted, returns shards for all indices.
Example:
{
"index": "my-index"
}
6. Add Document
Insert a new document into a specific Elasticsearch index.
Parameters:
index
(required, string): The index to which the document will be added.document
(required, object): The content of the document to add.id
(optional, string): Document ID. If omitted, Elasticsearch generates one automatically.
Example:
{
"index": "my-index",
"id": "doc1",
"document": {
"title": "My Document",
"content": "Document content here",
"timestamp": "2025-06-23T10:30:00Z",
"tags": ["important", "draft"]
}
}
7. Update Document
Modify an existing document in a specific Elasticsearch index.
Parameters:
index
(required, string): The index containing the document.id
(required, string): The ID of the document to update.document
(required, object): The partial document with fields to update.
Example:
{
"index": "my-index",
"id": "doc1",
"document": {
"title": "Updated Document Title",
"last_modified": "2025-06-23T10:30:00Z"
}
}
8. Delete Document
Remove a document from a specific Elasticsearch index.
Parameters:
index
(required, string): The index containing the document.id
(required, string): The ID of the document to delete.
Example:
{
"index": "my-index",
"id": "doc1"
}
9. Update By Query
Update documents in an Elasticsearch index based on a query.
Parameters:
index
(required, string): The index to update documents in.query
(required, object): Elasticsearch query to match documents for update.script
(required, object): Script to execute for updating matched documents.conflicts
(optional, string): How to handle version conflicts ("abort" or "proceed", default: "abort").refresh
(optional, boolean): Whether to refresh the index after the operation (default: false).
Example:
{
"index": "my-index",
"query": {
"term": {
"status": "active"
}
},
"script": {
"source": "ctx._source.status = params.newStatus; ctx._source.updated_at = params.timestamp",
"params": {
"newStatus": "inactive",
"timestamp": "2025-06-23T10:30:00Z"
}
},
"conflicts": "proceed",
"refresh": true
}
10. Delete By Query
Delete documents in an Elasticsearch index based on a query.
Parameters:
index
(required, string): The index to delete documents from.query
(required, object): Elasticsearch query to match documents for deletion.conflicts
(optional, string): How to handle version conflicts ("abort" or "proceed", default: "abort").refresh
(optional, boolean): Whether to refresh the index after the operation (default: false).
Example:
{
"index": "my-index",
"query": {
"range": {
"created_date": {
"lt": "2025-01-01"
}
}
},
"conflicts": "proceed",
"refresh": true
}
11. Bulk Operations
Execute multiple document operations in a single API call for improved performance.
Parameters:
operations
(required, array): Array of operation objects, each containing:action
(required, string): The operation type ("index", "create", "update", or "delete").index
(required, string): The index for this operation.id
(optional, string): Document ID (required for update/delete, optional for index/create).document
(conditional, object): Document content (required for index/create/update operations).
Example:
{
"operations": [
{
"action": "index",
"index": "my-index",
"id": "doc1",
"document": { "title": "Document 1", "content": "Content here" }
},
{
"action": "update",
"index": "my-index",
"id": "doc2",
"document": { "title": "Updated Title" }
},
{
"action": "delete",
"index": "my-index",
"id": "doc3"
}
]
}
12. Create Index
Create a new Elasticsearch index with optional settings and mappings.
Parameters:
index
(required, string): The name of the index to create.settings
(optional, object): Index settings like number of shards, replicas, etc.mappings
(optional, object): Field mappings defining how documents should be indexed.
Example:
{
"index": "new-index",
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1,
"analysis": {
"analyzer": {
"custom_analyzer": {
"type": "standard",
"stopwords": "_english_"
}
}
}
},
"mappings": {
"properties": {
"title": {
"type": "text",
"analyzer": "custom_analyzer"
},
"created": {
"type": "date",
"format": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"tags": {
"type": "keyword"
}
}
}
}
13. Delete Index
Permanently delete an Elasticsearch index.
Parameters:
index
(required, string): The name of the index to delete.
Example:
{
"index": "my-index"
}
14. Count Documents
Count documents in an index, optionally filtered by a query.
Parameters:
index
(required, string): The index to count documents in.query
(optional, object): Elasticsearch query to filter documents for counting.
Example:
{
"index": "my-index",
"query": {
"bool": {
"must": [
{ "term": { "status": "active" } },
{ "range": { "created_date": { "gte": "2025-01-01" } } }
]
}
}
}
15. Get Templates
Retrieve index templates from Elasticsearch.
Parameters:
name
(optional, string): Specific template name to retrieve. If omitted, returns all templates.
Example:
{
"name": "logs-template"
}
16. Get Aliases
Fetch index aliases from Elasticsearch.
Parameters:
name
(optional, string): Specific alias name to retrieve. If omitted, returns all aliases.
Example:
{
"name": "logs-alias"
}
Development
Running in Development Mode
To run the server in watch mode during development, use:
npm run dev
Protocol Implementation
This server implements the Model Context Protocol to facilitate standardized communication between LLM clients and Elasticsearch. It provides a comprehensive set of tools that can be invoked by MCP clients to perform various Elasticsearch operations.
Adding New Tools
To add a new tool to the server:
- Define the tool in
src/index.ts
using the MCP server's tool registration format. - Implement the necessary functionality in
src/utils/elasticsearchService.ts
. - Update this README to document the new tool.
Other MCP Clients
The Octodet Elasticsearch MCP Server can be utilized with any MCP-compatible client, including:
- OpenAI's ChatGPT via MCP plugins
- Anthropic's Claude Desktop
- Claude in VS Code
- Custom applications using the MCP SDK
Programmatic Usage
You can also use the server programmatically in your Node.js applications:
import { createOctodetElasticsearchMcpServer } from "@octodet/elasticsearch-mcp";
import { CustomTransport } from "@modelcontextprotocol/sdk/server";
// Configure the Elasticsearch connection
const config = {
url: "http://localhost:9200",
apiKey: "your_api_key",
version: "8",
};
// Create and start the server
async function startServer() {
const server = await createOctodetElasticsearchMcpServer(config);
// Connect to your custom transport
const transport = new CustomTransport();
await server.connect(transport);
console.log("Elasticsearch MCP server started");
}
startServer().catch(console.error);
License
This project is licensed under the MIT License - see the LICENSE file for details.
Details
Octodet Elasticsearch MCP Server
A Model Context Protocol (MCP) server for Elasticsearch operations, providing a comprehensive set of tools for interacting with Elasticsearch clusters through the standardized Model Context Protocol. This server enables LLM-powered applications to search, update, and manage Elasticsearch data.
Features
- Complete Elasticsearch Operations: Full CRUD operations for documents and indices
- Bulk Operations: Process multiple operations in a single API call
- Query-Based Updates/Deletes: Modify or remove documents based on queries
- Cluster Management: Monitor health, shards, and templates
- Advanced Search: Full support for Elasticsearch DSL queries with highlighting
Installation
As an NPM Package
Install the package globally:
npm install -g @octodet/elasticsearch-mcp
Or use it directly with npx:
npx @octodet/elasticsearch-mcp
From Source
- Clone this repository
- Install dependencies:
npm install
- Build the server:
npm run build
Integration with MCP Clients
VS Code Integration
Add the following configuration to your VS Code settings.json to integrate with the VS Code MCP extension:
"mcp.servers": {
"elasticsearch": {
"command": "npx",
"args": [
"-y", "@octodet/elasticsearch-mcp"
],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
Claude Desktop Integration
Configure in your Claude Desktop configuration file:
{
"mcpServers": {
"elasticsearch": {
"command": "npx",
"args": ["-y", "@octodet/elasticsearch-mcp"],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}
For Local Development
If you're developing the MCP server locally, you can configure the clients to use your local build:
{
"mcpServers": {
"elasticsearch": {
"command": "node",
"args": ["path/to/build/index.js"],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}
Configuration
The server uses the following environment variables for configuration:
| Variable | Description | Default | | | | | | ES_URL | Elasticsearch server URL | http://localhost:9200 | | ES_API_KEY | API key for authentication | | | ES_USERNAME | Username for authentication | | | ES_PASSWORD | Password for authentication | | | ES_CA_CERT | Path to custom CA certificate | | | ES_VERSION | Elasticsearch version (8 or 9) | 8 | | ES_SSL_SKIP_VERIFY | Skip SSL verification | false | | ES_PATH_PREFIX | Path prefix for Elasticsearch | |
Tools
The server provides 16 MCP tools for Elasticsearch operations. Each tool is documented with its required and optional parameters:
1. List Indices
List all available Elasticsearch indices with detailed information.
Parameters:
indexPattern
(optional, string): Pattern to filter indices (e.g., "logs-", "my-index-")
Example:
{
"indexPattern": "logs-*"
}
2. Get Mappings
Get field mappings for a specific Elasticsearch index.
Parameters:
index
(required, string): The name of the index to get mappings for
Example:
{
"index": "my-index"
}
3. Search
Perform an Elasticsearch search with the provided query DSL and highlighting.
Parameters:
index
(required, string): The index or indices to search in (supports comma-separated values)queryBody
(required, object): The Elasticsearch query DSL bodyhighlight
(optional, boolean): Enable search result highlighting (default: true)
Example:
{
"index": "my-index",
"queryBody": {
"query": {
"match": {
"content": "search term"
}
},
"size": 10,
"from": 0,
"sort": [{ "_score": { "order": "desc" } }]
},
"highlight": true
}
4. Get Cluster Health
Get health information about the Elasticsearch cluster.
Parameters:
- None required
Example:
{}
5. Get Shards
Get shard information for all or specific indices.
Parameters:
index
(optional, string): Specific index to get shard information for. If omitted, returns shards for all indices
Example:
{
"index": "my-index"
}
6. Add Document
Add a new document to a specific Elasticsearch index.
Parameters:
index
(required, string): The index to add the document todocument
(required, object): The document content to addid
(optional, string): Document ID. If omitted, Elasticsearch will generate one automatically
Example:
{
"index": "my-index",
"id": "doc1",
"document": {
"title": "My Document",
"content": "Document content here",
"timestamp": "2025-06-23T10:30:00Z",
"tags": ["important", "draft"]
}
}
7. Update Document
Update an existing document in a specific Elasticsearch index.
Parameters:
index
(required, string): The index containing the documentid
(required, string): The ID of the document to updatedocument
(required, object): The partial document with fields to update
Example:
{
"index": "my-index",
"id": "doc1",
"document": {
"title": "Updated Document Title",
"last_modified": "2025-06-23T10:30:00Z"
}
}
8. Delete Document
Delete a document from a specific Elasticsearch index.
Parameters:
index
(required, string): The index containing the documentid
(required, string): The ID of the document to delete
Example:
{
"index": "my-index",
"id": "doc1"
}
9. Update By Query
Update documents in an Elasticsearch index based on a query.
Parameters:
index
(required, string): The index to update documents inquery
(required, object): Elasticsearch query to match documents for updatescript
(required, object): Script to execute for updating matched documentsconflicts
(optional, string): How to handle version conflicts ("abort" or "proceed", default: "abort")refresh
(optional, boolean): Whether to refresh the index after the operation (default: false)
Example:
{
"index": "my-index",
"query": {
"term": {
"status": "active"
}
},
"script": {
"source": "ctx._source.status = params.newStatus; ctx._source.updated_at = params.timestamp",
"params": {
"newStatus": "inactive",
"timestamp": "2025-06-23T10:30:00Z"
}
},
"conflicts": "proceed",
"refresh": true
}
10. Delete By Query
Delete documents in an Elasticsearch index based on a query.
Parameters:
index
(required, string): The index to delete documents fromquery
(required, object): Elasticsearch query to match documents for deletionconflicts
(optional, string): How to handle version conflicts ("abort" or "proceed", default: "abort")refresh
(optional, boolean): Whether to refresh the index after the operation (default: false)
Example:
{
"index": "my-index",
"query": {
"range": {
"created_date": {
"lt": "2025-01-01"
}
}
},
"conflicts": "proceed",
"refresh": true
}
11. Bulk Operations
Perform multiple document operations in a single API call for better performance.
Parameters:
operations
(required, array): Array of operation objects, each containing:action
(required, string): The operation type ("index", "create", "update", or "delete")index
(required, string): The index for this operationid
(optional, string): Document ID (required for update/delete, optional for index/create)document
(conditional, object): Document content (required for index/create/update operations)
Example:
{
"operations": [
{
"action": "index",
"index": "my-index",
"id": "doc1",
"document": { "title": "Document 1", "content": "Content here" }
},
{
"action": "update",
"index": "my-index",
"id": "doc2",
"document": { "title": "Updated Title" }
},
{
"action": "delete",
"index": "my-index",
"id": "doc3"
}
]
}
12. Create Index
Create a new Elasticsearch index with optional settings and mappings.
Parameters:
index
(required, string): The name of the index to createsettings
(optional, object): Index settings like number of shards, replicas, etc.mappings
(optional, object): Field mappings defining how documents should be indexed
Example:
{
"index": "new-index",
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1,
"analysis": {
"analyzer": {
"custom_analyzer": {
"type": "standard",
"stopwords": "_english_"
}
}
}
},
"mappings": {
"properties": {
"title": {
"type": "text",
"analyzer": "custom_analyzer"
},
"created": {
"type": "date",
"format": "yyyy-MM-dd'T'HH:mm:ss'Z'"
},
"tags": {
"type": "keyword"
}
}
}
}
13. Delete Index
Delete an Elasticsearch index permanently.
Parameters:
index
(required, string): The name of the index to delete
Example:
{
"index": "my-index"
}
14. Count Documents
Count documents in an index, optionally filtered by a query.
Parameters:
index
(required, string): The index to count documents inquery
(optional, object): Elasticsearch query to filter documents for counting
Example:
{
"index": "my-index",
"query": {
"bool": {
"must": [
{ "term": { "status": "active" } },
{ "range": { "created_date": { "gte": "2025-01-01" } } }
]
}
}
}
15. Get Templates
Get index templates from Elasticsearch.
Parameters:
name
(optional, string): Specific template name to retrieve. If omitted, returns all templates
Example:
{
"name": "logs-template"
}
16. Get Aliases
Get index aliases from Elasticsearch.
Parameters:
name
(optional, string): Specific alias name to retrieve. If omitted, returns all aliases
Example:
{
"name": "logs-alias"
}
Development
Running in Development Mode
Run the server in watch mode during development:
npm run dev
Protocol Implementation
This server implements the Model Context Protocol to enable standardized communication between LLM clients and Elasticsearch. It provides a set of tools that can be invoked by MCP clients to perform various Elasticsearch operations.
Adding New Tools
To add a new tool to the server:
- Define the tool in
src/index.ts
using the MCP server's tool registration format - Implement the necessary functionality in
src/utils/elasticsearchService.ts
- Update this README to document the new tool
Other MCP Clients
This server can be used with any MCP-compatible client, including:
- OpenAI's ChatGPT via MCP plugins
- Anthropic's Claude Desktop
- Claude in VS Code
- Custom applications using the MCP SDK
Programmatic Usage
You can also use the server programmatically in your Node.js applications:
import { createOctodetElasticsearchMcpServer } from "@octodet/elasticsearch-mcp";
import { CustomTransport } from "@modelcontextprotocol/sdk/server";
// Configure the Elasticsearch connection
const config = {
url: "http://localhost:9200",
apiKey: "your_api_key",
version: "8",
};
// Create and start the server
async function startServer() {
const server = await createOctodetElasticsearchMcpServer(config);
// Connect to your custom transport
const transport = new CustomTransport();
await server.connect(transport);
console.log("Elasticsearch MCP server started");
}
startServer().catch(console.error);
License
This project is licensed under the MIT License - see the LICENSE file for details.
Server Config
{
"mcpServers": {
"elasticsearch": {
"command": "npx",
"args": [
"-y",
"@octodet/elasticsearch-mcp"
],
"env": {
"ES_URL": "http://localhost:9200",
"ES_API_KEY": "your_api_key",
"ES_VERSION": "8"
}
}
}
}
Octodet Elasticsearc... Alternative
For some alternatives to Octodet Elasticsearc... that you may need, we provide you with sites divided by category.
This read-only MCP Server allows you to connect to Email data from Claude Desktop through CData JDBC Drivers. Free (beta) read/write servers are available at https://www.cdata.com/solutions/mcp
Official Firecrawl MCP Server - Adds powerful web scraping capabilities to Cursor, Claude, and any other LLM clients.
Time MCP Server is a Model Context Protocol server that provides time and timezone conversion capabilities. It enables LLMs to get current time information and perform timezone conversions using IANA timezone names, with automatic system timezone detection.
MCP Connect is a tool that enables cloud-based AI services to access local Stdio based Model Context Protocol (MCP) servers, bridging the gap between local resources and cloud applications.
Windsurf is a purpose-built Integrated Development Environment (IDE) designed to enhance coding experiences by leveraging AI capabilities.