MCP接続
MCP Connectは、クラウドベースのAIサービスがローカルのStdioベースのモデルコンテキストプロトコル(MCP)サーバーにアクセスできるようにするツールであり、ローカルリソースとクラウドアプリケーションのギャップを埋めます。
概要
MCP Connectとは?
MCP Connectは、クラウドベースのAIサービスがローカルのStdioベースのモデルコンテキストプロトコル(MCP)サーバーにアクセスできるようにするツールで、ローカルリソースとクラウドアプリケーションのギャップを埋めます。
MCP Connectの使い方
MCP Connectを使用するには:
- リポジトリをクローンする
- 環境変数を設定する
- 依存関係をインストールする
- アプリケーションをローカルで実行する
- オプションで、トンネル(例:Ngrok)を使用してクラウドアクセスを可能にする
MCP Connectの主な機能
- クラウド統合:クラウドAIツールとローカルMCPサーバーを接続
- プロトコル変換:HTTP/HTTPSリクエストをStdio通信に変換
- セキュリティ:ローカルリソースへの安全なアクセスを確保
- 柔軟性:変更なしでさまざまなMCPサーバーをサポート
- 使いやすさ:MCPサーバーに変更を必要としない
- トンネルサポート:Ngrokトンネルのための組み込みサポート
MCP Connectのユースケース
- ローカルAIツールとクラウドベースのアプリケーションの統合
- クラウド環境からローカルリソースへの安全なアクセス
- クラウドサービスとローカルMCPサーバー間の通信を促進
MCP Connectに関するFAQ
MCP Connectの設定は簡単ですか?
はい!最小限の設定で迅速にセットアップできます。
MCP ConnectはどのMCPサーバーでも使用できますか?
はい!MCP Connectは、変更なしでさまざまなMCPサーバーと連携するように設計されています。
MCP Connectを使用するための前提条件は何ですか?
MCP Connectを実行するには、Node.jsがインストールされている必要があります。
詳細
MCP Connect
███╗ ███╗ ██████╗██████╗ ██████╗ ██████╗ ███╗ ██╗███╗ ██╗███████╗ ██████╗████████╗
████╗ ████║██╔════╝██╔══██╗ ██╔════╝██╔═══██╗████╗ ██║████╗ ██║██╔════╝██╔════╝╚══██╔══╝
██╔████╔██║██║ ██████╔╝ ██║ ██║ ██║██╔██╗ ██║██╔██╗ ██║█████╗ ██║ ██║
██║╚██╔╝██║██║ ██╔═══╝ ██║ ██║ ██║██║╚██╗██║██║╚██╗██║██╔══╝ ██║ ██║
██║ ╚═╝ ██║╚██████╗██║ ╚██████╗╚██████╔╝██║ ╚████║██║ ╚████║███████╗╚██████╗ ██║
╚═╝ ╚═╝ ╚═════╝╚═╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═══╝╚═╝ ╚═══╝╚══════╝ ╚═════╝ ╚═╝
The Model Context Protocol (MCP) introduced by Anthropic is cool. However, most MCP servers are built on Stdio transport, which, while excellent for accessing local resources, limits their use in cloud-based applications.
MCP Connect is a tiny tool that is created to solve this problem:
- Cloud Integration: Enables cloud-based AI services to interact with local Stdio based MCP servers
- Protocol Translation: Converts HTTP/HTTPS requests to Stdio communication
- Security: Provides secure access to local resources while maintaining control
- Flexibility: Supports various MCP servers without modifying their implementation
- Easy to use: Just run MCP Connect locally, zero modification to the MCP server
- Tunnel: Built-in support for Ngrok tunnel
By bridging this gap, we can leverage the full potential of local MCP tools in cloud-based AI applications without compromising on security.
How it works
+-----------------+ HTTPS/SSE +------------------+ stdio +------------------+
| | | | | |
| Cloud AI tools | <---------------> | Node.js Bridge | <------------> | MCP Server |
| (Remote) | Tunnels | (Local) | | (Local) |
| | | | | |
+-----------------+ +------------------+ +------------------+
Prerequisites
- Node.js
Quick Start
- Clone the repository
and enter the directorygit clone https://github.com/EvalsOne/MCP-connect.git
cd MCP-connect
- Copy
.env.example
to.env
and configure the port and auth_token:cp .env.example .env
- Install dependencies:
npm install
- Run MCP Connect
# build MCP Connect npm run build # run MCP Connect npm run start # or, run in dev mode (supports hot reloading by nodemon) npm run dev
Now MCP connect should be running on http://localhost:3000/bridge
.
Note:
- The bridge is designed to be run on a local machine, so you still need to build a tunnel to the local MCP server that is accessible from the cloud.
- Ngrok, Cloudflare Zero Trust, and LocalTunnel are recommended for building the tunnel.
Running with Ngrok Tunnel
MCP Connect has built-in support for Ngrok tunnel. To run the bridge with a public URL using Ngrok:
- Get your Ngrok auth token from https://dashboard.ngrok.com/authtokens
- Add to your .env file:
NGROK_AUTH_TOKEN=your_ngrok_auth_token
- Run with tunnel:
# Production mode with tunnel npm run start:tunnel # Development mode with tunnel npm run dev:tunnel
After MCP Connect is running, you can see the MCP bridge URL in the console.
API Endpoints
After MCP Connect is running, there are two endpoints exposed:
GET /health
: Health check endpointPOST /bridge
: Main bridge endpoint for receiving requests from the cloud
For example, the following is a configuration of the official GitHub MCP:
{
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-github"
],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "<your_github_personal_access_token>"
}
}
You can send a request to the bridge as the following to list the tools of the MCP server and call a specific tool.
Listing tools:
curl -X POST http://localhost:3000/bridge \
-d '{
"method": "tools/list",
"serverPath": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-github"
],
"params": {},
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "<your_github_personal_access_token>"
}
}'
Calling a tool:
Using the search_repositories tool to search for repositories related to modelcontextprotocol
curl -X POST http://localhost:3000/bridge \
-d '{
"method": "tools/call",
"serverPath": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-github"
],
"params": {
"name": "search_repositories",
"arguments": {
"query": "modelcontextprotocol"
},
},
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "<your_github_personal_access_token>"
}
}'
Authentication
MCP Connect uses a simple token-based authentication system. The token is stored in the .env
file. If the token is set, MCP Connect will use it to authenticate the request.
Sample request with token:
curl -X POST http://localhost:3000/bridge \
-H "Authorization: Bearer <your_auth_token>" \
-d '{
"method": "tools/list",
"serverPath": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-github"
],
"params": {},
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "<your_github_personal_access_token>"
}
}'
Configuration
Required environment variables:
AUTH_TOKEN
: Authentication token for the bridge API (Optional)PORT
: HTTP server port (default: 3000, required)LOG_LEVEL
: Logging level (default: info, required)NGROK_AUTH_TOKEN
: Ngrok auth token (Optional)
Using MCP Connect with ConsoleX AI to access local MCP Server
The following is a demo of using MCP Connect to access a local MCP Server on ConsoleX AI:
License
MIT License