Mcp Ocultar
Proxy MCP enfocado en la privacidad que pseudo-anonimiza inteligentemente la PII en tiempo real antes de que los datos lleguen a proveedores externos de IA, manteniendo relaciones semánticas para un análisis preciso.
Resumen
¿Qué es MCP Server Conceal?
MCP Server Conceal es una solución de proxy enfocada en la privacidad, diseñada para pseudo-anonimizar de manera inteligente la Información Personal Identificable (PII) en tiempo real. Esto asegura que los datos sensibles estén protegidos antes de llegar a proveedores de IA externos, mientras se mantienen las relaciones semánticas necesarias para un análisis preciso. La herramienta es particularmente útil para organizaciones que priorizan la privacidad de los datos y el cumplimiento de regulaciones.
Características de MCP Server Conceal
- Anonimización de PII en tiempo real: Anonimiza automáticamente los datos sensibles a medida que se transmiten, asegurando que la PII nunca se exponga a servicios externos.
- Mantenimiento de relaciones semánticas: Preserva el contexto y las relaciones de los datos, permitiendo un análisis significativo sin comprometer la privacidad.
- Interfaz fácil de usar: Diseñada para ser fácil de usar, lo que permite una configuración rápida e integración en sistemas existentes.
- Código abierto: Disponible en plataformas como GitHub, lo que permite contribuciones de la comunidad y transparencia en el desarrollo.
- Licencia MIT: El proyecto está licenciado bajo la Licencia MIT, promoviendo la libertad de usar, modificar y distribuir el software.
Cómo usar MCP Server Conceal
- Instalación: Clona el repositorio desde GitHub y sigue las instrucciones de instalación proporcionadas en el archivo README.
- Configuración: Configura los ajustes del proxy para definir cómo deben ser anonimizados los datos y qué parámetros mantener.
- Integración: Integra MCP Server Conceal en tu flujo de datos existente, asegurando que todos los datos salientes pasen a través del proxy.
- Pruebas: Realiza pruebas para asegurarte de que la PII se esté anonimizando correctamente y que se mantengan las relaciones semánticas.
- Despliegue: Una vez completadas las pruebas, despliega la solución en un entorno de producción.
Preguntas Frecuentes
P: ¿Qué tipos de datos anonimizan MCP Server Conceal?
R: MCP Server Conceal está diseñado para anonimizar varios tipos de PII, incluyendo nombres, direcciones, direcciones de correo electrónico y otra información sensible.
P: ¿Es MCP Server Conceal adecuado para todas las industrias?
R: Sí, es adecuado para cualquier industria que maneje datos sensibles y necesite cumplir con regulaciones de privacidad, como salud, finanzas y comercio electrónico.
P: ¿Puedo personalizar el proceso de anonimización?
R: Sí, MCP Server Conceal permite la personalización de las reglas de anonimización para adaptarse a las necesidades específicas de la organización.
P: ¿Cómo mantiene MCP Server Conceal las relaciones semánticas?
R: La herramienta utiliza algoritmos avanzados para asegurar que, mientras los datos son anonimizados, se preserven las relaciones entre los puntos de datos para un análisis preciso.
P: ¿Dónde puedo encontrar soporte para MCP Server Conceal?
R: El soporte se puede encontrar a través del repositorio de GitHub, donde los usuarios pueden informar problemas, contribuir a discusiones y acceder a la documentación.
Detalle
MCP Conceal
An MCP proxy that pseudo-anonymizes PII before data reaches external AI providers like Claude, ChatGPT, or Gemini.
sequenceDiagram
participant C as AI Client (Claude)
participant P as MCP Conceal
participant S as Your MCP Server
C->>P: Request
P->>S: Request
S->>P: Response with PII
P->>P: PII Detection
P->>P: Pseudo-Anonymization
P->>P: Consistent Mapping
P->>C: Sanitized Response
MCP Conceal performs pseudo-anonymization rather than redaction to preserve semantic meaning and data relationships required for AI analysis. Example: john.smith@acme.com
becomes mike.wilson@techcorp.com
, maintaining structure while protecting sensitive information.
Installation
Download Pre-built Binary
- Visit the Releases page
- Download the binary for your platform:
Platform | Binary |
---|---|
Linux x64 | mcp-server-conceal-linux-amd64 |
macOS Intel | mcp-server-conceal-macos-amd64 |
macOS Apple Silicon | mcp-server-conceal-macos-aarch64 |
Windows x64 | mcp-server-conceal-windows-amd64.exe |
- Make executable:
chmod +x mcp-server-conceal-*
(Linux/macOS) - Add to PATH:
- Linux/macOS:
mv mcp-server-conceal-* /usr/local/bin/mcp-server-conceal
- Windows: Move to a directory in your PATH or add current directory to PATH
- Linux/macOS:
Building from Source
git clone https://github.com/gbrigandi/mcp-server-conceal
cd mcp-server-conceal
cargo build --release
Binary location: target/release/mcp-server-conceal
Quick Start
Prerequisites
Install Ollama for LLM-based PII detection:
- Install Ollama: ollama.ai
- Pull model:
ollama pull llama3.2:3b
- Verify:
curl http://localhost:11434/api/version
Basic Usage
Create a minimal mcp-server-conceal.toml
:
[detection]
mode = "regex_llm"
[llm]
model = "llama3.2:3b"
endpoint = "http://localhost:11434"
See the Configuration section for all available options.
Run as proxy:
mcp-server-conceal \
--target-command python3 \
--target-args "my-mcp-server.py" \
--config mcp-server-conceal.toml
Configuration
Complete configuration reference:
[detection]
mode = "regex_llm" # Detection strategy: regex, llm, regex_llm
enabled = true
confidence_threshold = 0.8 # Detection confidence threshold (0.0-1.0)
[detection.patterns]
email = "\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Z|a-z]{2,}\\b"
phone = "\\b(?:\\+?1[-\\.\\s]?)?(?:\\(?[0-9]{3}\\)?[-\\.\\s]?)?[0-9]{3}[-\\.\\s]?[0-9]{4}\\b"
ssn = "\\b\\d{3}-\\d{2}-\\d{4}\\b"
credit_card = "\\b\\d{4}[-\\s]?\\d{4}[-\\s]?\\d{4}[-\\s]?\\d{4}\\b"
ip_address = "\\b(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\b"
url = "https?://[^\\s/$.?#].[^\\s]*"
[faker]
locale = "en_US" # Locale for generating realistic fake PII data
seed = 12345 # Seed ensures consistent anonymization across restarts
consistency = true # Same real PII always maps to same fake data
[mapping]
database_path = "mappings.db" # SQLite database storing real-to-fake mappings
retention_days = 90 # Delete old mappings after N days
[llm]
model = "llama3.2:3b" # Ollama model for PII detection
endpoint = "http://localhost:11434"
timeout_seconds = 180
prompt_template = "default" # Template for PII detection prompts
[llm_cache]
enabled = true # Cache LLM detection results for performance
database_path = "llm_cache.db"
max_text_length = 2000
Configuration Guidance
Detection Settings:
confidence_threshold
: Lower values (0.6) catch more PII but increase false positives. Higher values (0.9) are more precise but may miss some PII.mode
: Choose based on your latency vs accuracy requirements (see Detection Modes below)
Faker Settings:
locale
: Use "en_US" for American names/addresses, "en_GB" for British, etc. Affects realism of generated fake dataseed
: Keep consistent across deployments to ensure same real data maps to same fake dataconsistency
: Always leavetrue
to maintain data relationships
Mapping Settings:
retention_days
: Balance between data consistency and storage. Shorter periods (30 days) reduce storage but may cause inconsistent anonymization for recurring datadatabase_path
: Use absolute paths in production to avoid database location issues
Detection Modes
Choose the detection strategy based on your performance requirements and data complexity:
RegexLlm (Default)
Best for production environments - Combines speed and accuracy:
- Phase 1: Fast regex catches common patterns (emails, phones, SSNs)
- Phase 2: LLM analyzes remaining text for complex PII
- Use when: You need comprehensive detection with reasonable performance
- Performance: ~100-500ms per request depending on text size
- Configure:
mode = "regex_llm"
Regex Only
Best for high-volume, latency-sensitive applications:
- Uses only pattern matching - no AI analysis
- Use when: You have well-defined PII patterns and need <10ms response
- Trade-off: May miss contextual PII like "my account number is ABC123"
- Configure:
mode = "regex"
LLM Only
Best for complex, unstructured data:
- AI-powered detection catches nuanced PII patterns
- Use when: Accuracy is more important than speed
- Performance: ~200-1000ms per request
- Configure:
mode = "llm"
Advanced Usage
Claude Desktop Integration
Configure Claude Desktop to proxy MCP servers:
{
"mcpServers": {
"database": {
"command": "mcp-server-conceal",
"args": [
"--target-command", "python3",
"--target-args", "database-server.py --host localhost",
"--config", "/path/to/mcp-server-conceal.toml"
],
"env": {
"DATABASE_URL": "postgresql://localhost/mydb"
}
}
}
}
Custom LLM Prompts
Customize detection prompts for specific domains:
Template locations:
- Linux:
~/.local/share/mcp-server-conceal/prompts/
- macOS:
~/Library/Application Support/com.mcp-server-conceal.mcp-server-conceal/prompts/
- Windows:
%LOCALAPPDATA%\\com\\mcp-server-conceal\\mcp-server-conceal\\data\\prompts\\
Usage:
- Run MCP Conceal once to auto-generate
default.md
in the prompts directory:mcp-server-conceal --target-command echo --target-args "test" --config mcp-server-conceal.toml
- Copy:
cp default.md healthcare.md
- Edit template for domain-specific PII patterns
- Configure:
prompt_template = "healthcare"
Environment Variables
Pass environment variables to target process:
mcp-server-conceal \
--target-command node \
--target-args "server.js" \
--target-cwd "/path/to/server" \
--target-env "DATABASE_URL=postgresql://localhost/mydb" \
--target-env "API_KEY=secret123" \
--config mcp-server-conceal.toml
Troubleshooting
Enable debug logging:
RUST_LOG=debug mcp-server-conceal \
--target-command python3 \
--target-args server.py \
--config mcp-server-conceal.toml
Common Issues:
- Invalid regex patterns in configuration
- Ollama connectivity problems
- Database file permissions
- Missing prompt templates
Security
Mapping Database: Contains sensitive real-to-fake mappings. Secure with appropriate file permissions.
LLM Integration: Run Ollama on trusted infrastructure when using LLM-based detection modes.
Contributing
Contributions are welcome! Follow these steps to get started:
Development Setup
Prerequisites:
- Install Rust: https://rustup.rs/
- Minimum supported Rust version: 1.70+
-
Clone and setup:
git clone https://github.com/gbrigandi/mcp-server-conceal cd mcp-server-conceal
-
Build in development mode:
cargo build cargo test
-
Install development tools:
rustup component add clippy rustfmt
-
Run with debug logging:
RUST_LOG=debug cargo run -- --target-command cat --target-args test.txt --config mcp-server-conceal.toml
Testing
- Unit tests:
cargo test
- Integration tests:
cargo test --test integration_test
- Linting:
cargo clippy
- Formatting:
cargo fmt
Submitting Changes
- Fork the repository
- Create a feature branch:
git checkout -b feature-name
- Make your changes and add tests
- Ensure all tests pass:
cargo test
- Format code:
cargo fmt
- Submit a pull request with a clear description
License
MIT License - see LICENSE file for details.
Configuración del Servidor
{
"mcpServers": {
"conceal": {
"command": "mcp-server-conceal",
"args": [
"--target-command",
"python3",
"--target-args",
"database-server.py --host localhost",
"--config",
"/path/to/mcp-server-conceal.toml"
],
"env": {
"DATABASE_URL": "postgresql://localhost/mydb"
}
}
}
}